首页> 外文期刊>Nature >Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
【24h】

Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures

机译:将二维材料逐层组装成晶圆级异质结构

获取原文
获取原文并翻译 | 示例
       

摘要

High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery(1-3). One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions'. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three -atom-thick two-dimensional building blocks, respectively have been used to realize previously inaccessible heterostructures with interesting physical properties(7-11). However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces(12-15), thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
机译:具有垂直组成的高性能半导体膜设计用于原子级精度,为现代集成电路和新型材料的发现奠定了基础(1-3)。实现这种膜的一种方法是顺序的逐层组装,其中原子薄的二维构建块被垂直堆叠,并通过范德华相互作用将它们保持在一起。通过这种方法,分别使用代表一个和三个原子厚度的二维构建基的石墨烯和过渡金属二卤化物来实现以前无法获得的具有有趣物理特性的异质结构(7-11)。但是,目前尚不存在能够在生成原始层间界面的同时保持这些二维构件的固有属性的大规模组装方法(12-15),因此将逐层组装方法限于小规模的验证。概念演示。在这里,我们报道了具有很高水平的空间均匀性和原始界面的晶圆级半导体膜的产生。这些膜的垂直组成和性能是在真空下使用二维构件的逐层组装在原子尺度上设计的。我们制造了几种大规模,高质量的异质结构膜和器件,包括具有垂直成分的超晶格膜,这些膜是逐层设计的,批量制造的隧道器件阵列,其电阻可以在四个数量级范围内进行调整,是带工程的异质结构隧道二极管和毫米级的超薄膜和窗户。堆叠的薄膜是可拆卸的,可悬挂的,并且与水或塑料表面兼容,这将使其能够与先进的光学和机械系统集成在一起。

著录项

  • 来源
    《Nature》 |2017年第7675期|229-233|共5页
  • 作者单位

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA|Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA|Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA|Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA|Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA|Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA|Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA|Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA|Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA|Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA|Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号