...
首页> 外文期刊>Nature Materials >Droplet epitaxy of semiconductor nanostructures for quantum photonic devices
【24h】

Droplet epitaxy of semiconductor nanostructures for quantum photonic devices

机译:量子光子器件半导体纳米结构的液滴外延

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The long dreamed 'quantum internet' would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or 'artificial atoms'-namely, the Stranski-Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.
机译:长期梦想的“量子互联网”将由通过飞行Qubits连接的量子节点(固态或原子系统)的网络组成,自然基于光子,在光速下长距离行进,具有可忽略的干式延伸。关键组件是光源,能够提供单个或缠绕的光子对。在不同的平台中,半导体量子点(QD)非常有吸引力,因为它们可以与小型化芯片中的其他光子和电子元件集成。在20世纪90年代初期,开发了两种方法,用于综合自组装的外延半导体QDS,或'人工原子 - 即,斯特拉斯基krastanov(SK)和液滴外延(DE)方法。由于其坚固性和简单性,SK方法成为在基础和技术领域实现多个突破的主力。然而,对特定发射波长或结构和光学性质的需求仍然有动力进一步研究DE方法及其更新的发展,局部液滴蚀刻(LDE),作为获得高质量半导体纳米结构的互补路线。最近关于产生高度缠结的光子对的报告,结合良好的光子难以区分,表明DE和LDE QD可以补充(有时甚至均匀地)传统的SK IngaAs QD作为量子发射器。我们在这里展示了对DE和LDE的艺术状态的关键调查,鉴于量子通信和技术的应用,突出了仍然开放的优势和缺点,仍然开放的成就和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号