...
首页> 外文期刊>Nature Materials >Droplet epitaxy of semiconductor nanostructures for quantum photonic devices
【24h】

Droplet epitaxy of semiconductor nanostructures for quantum photonic devices

机译:量子光子器件半导体纳米结构的液滴外延

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The long dreamed 'quantum internet' would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or 'artificial atoms'-namely, the Stranski-Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.
机译:梦dream以求的“量子互联网”将由量子节点(固态或原子系统)网络组成,这些量子节点通过自然地基于光子的飞行量子位链接,以光速在远距离上传播,并且退相干可以忽略不计。关键组件是光源,能够提供单个或纠缠的光子对。在不同的平台中,半导体量子点(QD)极具吸引力,因为它们可以与其他光子和电子组件集成在微型芯片中。在1990年代初期,开发了两种方法来合成自组装外延半导体QD,即“人造原子”,即Stranski-Krastanov(SK)和液滴外延(DE)方法。由于其鲁棒性和简便性,SK方法成为在基础和技术领域均取得若干突破的主要力量。然而,对特定发射波长或结构和光学性质的需求促使人们对DE方法及其最近的发展,即局部液滴蚀刻(LDE)进行进一步研究,作为获得高质量半导体纳米结构的补充途径。关于高纠缠光子对的产生的最新报道,加上良好的光子不可分辨性,表明DE和LDE QD可以补充(有时甚至胜过)传统的SK InGaAs QD作为量子发射器。鉴于量子通信和技术中的应用,我们在这里对DE和LDE的技术现状进行一次重要的调查,重点介绍了优点和缺点,仍然存在的成就和挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号