...
首页> 外文期刊>Nature Materials >Bulk electronic structure of the dilute magnetic semiconductor Gai_(1-x)Mn_xAs through hard X-ray angle-resolved photoemission
【24h】

Bulk electronic structure of the dilute magnetic semiconductor Gai_(1-x)Mn_xAs through hard X-ray angle-resolved photoemission

机译:硬X射线角分辨光发射稀磁半导体Gai_(1-x)Mn_xAs的体电子结构。

获取原文
获取原文并翻译 | 示例
           

摘要

A detailed understanding of the origin of the magnetism in dilute magnetic semiconductors is crucial to their development for applications. Using hard X-ray angle-resolved photoemission (HARPES) at 3.2 keV, we investigate the bulk electronic structure of the prototypical dilute magnetic semiconductor Ga_(0.97)Mn_(0.03)As, and the reference undoped GaAs. The data are compared to theory based on the coherent potential approximation and fully relativistic one-step-model photoemission calculations including matrix-element effects. Distinct differences are found between angle-resolved, as well as angle-integrated, valence spectra of Ga_(0.97)Mn_(0.03)As and GaAs, and these are in good agreement with theory. Direct observation of Mn-induced states between the GaAs valence-band maximum and the Fermi level, centred about 400 meV below this level, as well as changes throughout the full valence-level energy range, indicates that ferromagnetism in Ga_(1-x)Mn_xAs must be considered to arise from both p-d exchange and double exchange, thus providing a more unifying picture of this controversial material.
机译:对稀磁半导体中磁性起源的详细了解对于其在应用中的发展至关重要。使用3.2 keV的硬X射线角度分辨光发射(HARPES),我们研究了典型的稀磁半导体Ga_(0.97)Mn_(0.03)As和参考未掺杂GaAs的体电子结构。将数据与基于相干势近似和完全相对论的一步模型光发射计算(包括矩阵元素效应)的理论进行比较。 Ga_(0.97)Mn_(0.03)As和GaAs的角度分辨和角度积分的价谱之间存在明显差异,与理论吻合良好。直接观察GaAs价带最大值与费米能级之间的Mn感应态,中心在该能级以下约400 meV,并且在整个价能级范围内都有变化,这表明Ga_(1-x)中的铁磁性必须考虑Mn_xAs是由钯交换和双交换引起的,因此提供了这种有争议材料的更统一的图景。

著录项

  • 来源
    《Nature Materials》 |2012年第11期|p.957-962|共6页
  • 作者单位

    Department of Physics, University of California Davis, Davis, California 95616, USA,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory,Menlo Park, California 94025, USA;

    Department of Chemistry, Ludwig Maximillian University, 81377 Munich, Germany;

    NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148, Japan;

    Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, USA;

    NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148, Japan;

    lstituto Officina dei Materiali IOM-CNR, Lab. TASC, S.S. 14 Km 163.5, in AREA Science Park, 34149 Trieste, Italy;

    Department of Chemistry, Ludwig Maximillian University, 81377 Munich, Germany;

    Peter Gruenberg Institut PGI-6, Research Center Juelich, 52425 Juelich, Germany;

    Peter Gruenberg Institut PGI-6, Research Center Juelich, 52425 Juelich, Germany;

    lstituto Officina dei Materiali IOM-CNR, Lab. TASC, S.S. 14 Km 163.5, in AREA Science Park, 34149 Trieste, Italy;

    Department of Chemistry, Ludwig Maximillian University, 81377 Munich, Germany;

    Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, USA;

    NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148, Japan;

    Department of Physics, University of California Davis, Davis, California 95616, USA,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号