...
首页> 外文期刊>Nature Materials >Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains
【24h】

Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

机译:具有对准的单晶畴的大面积有机半导体薄膜的溶液涂覆

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach-termed fluid-enhanced crystal engineering (FLUENCE)-that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1 ±1.2 cm~2 V~(-1) s~(-1) and 11 cm~2 V~(-1) s~(-1). FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics.
机译:有机半导体的溶液涂层为实现低成本制造大面积和柔性电子产品提供了巨大的潜力。然而,工业规模生产所需的快速涂覆速度对控制薄膜形态提出了挑战。在这里,我们报告了一种称为流体增强晶体工程(FLUENCE)的方法,该方法可实现溶液印刷薄膜的高度形态控制。我们设计了微柱图案的印刷刮刀,以诱导墨水中的再循环以增强晶体生长,并设计了墨水弯月面的曲率来控制晶体成核。使用FLUENCE,我们演示了毫米级,厘米级,高度对准的单晶有机半导体薄膜的快速涂层和构图。特别是,我们制备了具有非平衡单晶域和史无前例的平均和最大迁移率8.1±1.2 cm〜2 V〜(-1)s〜(-1)的6,13-​​双(三异丙基甲硅烷基乙炔基)并五苯薄膜)和11 cm〜2 V〜(-1)s〜(-1)。具有非平衡单晶域的有机半导体的影响力可用于制造高性能,大面积印刷电子产品。

著录项

  • 来源
    《Nature Materials》 |2013年第7期|665-671|共7页
  • 作者单位

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Electrical Engineering, Stanford University,Stanford, California 94305, USA;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA,Department of Polymer Science and Engineering, Institute of Chemistry and Chemical Engineering, The State Key Laboratory of Coordination Chemistry, The National Laboratory of Nanjing Microstructure Study, Nanjing University, Nanjing 210093, China;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA,Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul, 156-743,Republic Korea;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA,Department of Chemistry at Brigham Young University, Idaho, Rexburg, Idaho 83440, USA;

    Department of Chemistry, Stanford University, Stanford, California 94305, USA,Lockheed Martin Space Systems Company, 3251 Hanover Street, Palo Alto, California 94304, USA;

    Department of Electrical Engineering, Stanford University,Stanford, California 94305, USA;

    Department of Polymer Science and Engineering, Institute of Chemistry and Chemical Engineering, The State Key Laboratory of Coordination Chemistry, The National Laboratory of Nanjing Microstructure Study, Nanjing University, Nanjing 210093, China;

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory,Menlo Park, California 94025, USA;

    Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号