首页> 外文期刊>Naturwissenschaften >Thermodynamics of an ideal generalized gas: I. Thermodynamic laws
【24h】

Thermodynamics of an ideal generalized gas: I. Thermodynamic laws

机译:理想广义气体的热力学:I.热力学定律

获取原文
获取原文并翻译 | 示例
       

摘要

The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grueeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.
机译:理想相对论或广义气体(如理想量子气体)的状态方程是根据温度的幂律表示的。与理想的经典气体相反,内部能量是恒定温度下体积的函数,这意味着理想的广义气体将显示出有吸引力的或排斥的相互作用。这是遵守第三定律并使物质具有电磁起源的必要条件。当从子方程到拉格朗日方程的两个独立解合并时,就会发生从理想广义气体到经典气体的过渡。将压力与内部能量相关的状态方程涵盖了整个宇宙学情景,从辐射到以物质为主的宇宙,最后是真空能,从而可以用类似于Grueeisen比的比例系数来解释与内部能量的温度指数和绝对温度有关的自由度的术语,以经验温度的幂表示。这些指数合并的极限显示为理想的经典气体极限。证明了对卡诺定理的推论,该论断认为,在相同体积下,所有物体在一个恒定体积内完成的功与吸收的热量之比,以增加恒定温度下的温度。作为功​​率手段,能量和熵是无与伦比的,并且通过显示升高到特征指数的体积也是热量的积分因子来引入新的绝热势,因此第二定律可以基于以下性质:动力装置是单调递增的功能。广泛系统中化学势的消失意味着没有物质就无法传输能量,这相当于满足Clapeyron方程的条件。

著录项

  • 来源
    《Naturwissenschaften》 |2005年第11期|p.516-522|共7页
  • 作者

    B. H. Lavenda;

  • 作者单位

    Universita degli Studi, Camerino, 62032 (MC), Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

  • 入库时间 2022-08-18 01:31:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号