首页> 外文期刊>Natural Computing >Finding independent components using spikes: A natural result of hebbian learning in a sparse spike coding scheme
【24h】

Finding independent components using spikes: A natural result of hebbian learning in a sparse spike coding scheme

机译:使用尖峰查找独立的分量:稀疏尖峰编码方案中hebbian学习的自然结果

获取原文
获取原文并翻译 | 示例

摘要

As an alternative to classical representations in machine learning algorithms, we explore coding strategies using events as is observed for spiking neurons in the central nervous system. Focusing on visual processing, we have previously shown that we can define with an over-complete dictionary a sparse spike coding scheme by implementing lateral interactions that account for redundant information. Since this class of algorithms is both compatible with biological constraints and with neuro-physiological observations, it can provide a possible algorithm to explain the speed of visual processing despite the relatively slow time of response of single neurons. Here, I explore learning mechanisms to derive in an unsupervised manner an over-complete set of filters which provides a progressively sparser representation of the input. This work is based on a previous model of sparse coding from Olshausen et al. (1998) and the results leads to similar results, suggesting that this strategy provides a simple neural implementation of this algorithm and thus of Blind Source Separation. Moreover, this neuro-mimetic algorithm may be easily extended to realistic architectures of cortical columns in the primary visual cortex and we show results for different strategies of representation, leading to neuro-mimetic adaptive sparse spike coding schemes.
机译:作为机器学习算法中经典表示的替代方法,我们使用事件来探索编码策略,如在中枢神经系统中出现尖峰神经元那样。着重于视觉处理,我们之前已经表明,通过实现解释冗余信息的横向交互,我们可以使用超完备字典定义稀疏尖峰编码方案。由于此类算法既与生物学约束又与神经生理学观察结果兼容,因此尽管单个神经元的响应时间相对较慢,但它可以提供一种可能的算法来解释视觉处理的速度。在这里,我探索了一种学习机制,以一种无监督的方式得出了一组过于完整的过滤器,这些过滤器提供了输入的渐进式稀疏表示。这项工作基于Olshausen等人先前的稀疏编码模型。 (1998)和结果导致类似的结果,表明该策略提供了该算法的一个简单的神经实现,从而盲源分离。此外,这种模拟神经算法可以很容易地扩展到初级视觉皮层的皮质柱的现实体系结构,并且我们展示了不同表示策略的结果,从而导致了模拟神经自适应稀疏尖峰编码方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号