首页> 外文期刊>Natural Computing >A Petri net representation of Bayesian message flows: importance of Bayesian networks for biological applications
【24h】

A Petri net representation of Bayesian message flows: importance of Bayesian networks for biological applications

机译:贝叶斯消息流的Petri网表示:贝叶斯网络对生物学应用的重要性

获取原文
获取原文并翻译 | 示例

摘要

This article combines Bayes' theorem with flows of probabilities, flows of evidences (likelihoods), and fundamental concepts for learning Bayesian networks as biological models from data. There is a huge amount of biological applications of Bayesian networks. For example in the fields of protein modeling, pathway modeling, gene expression analysis, DNA sequence analysis, protein-protein interaction, or protein-DNA interaction. Usually, the Bayesian networks have to be learned (statistically constructed) from array data. Then they are considered as an executable and analyzable model of the data source. To improve that, this work introduces a Petri net representation for the propagation of probabilities and likelihoods in Bayesian networks. The reason for doing so is to exploit the structural and dynamic properties of Petri nets for increasing the transparency of propagation processes. Consequently the novel Petri nets are called "probability propagation nets". By means of examples it is shown that the understanding of the Bayesian propagation algorithm is improved. This is of particular importance for an exact visualization of biological systems by Bayesian networks.
机译:本文将贝叶斯定理与概率流,证据流(可能性)以及将贝叶斯网络作为数据生物学模型学习的基本概念相结合。贝叶斯网络有大量的生物学应用。例如,在蛋白质建模,途径建模,基因表达分析,DNA序列分析,蛋白质-蛋白质相互作用或蛋白质-DNA相互作用领域。通常,必须从数组数据中学习(统计构造)贝叶斯网络。然后,它们被视为数据源的可执行和可分析模型。为了改善这一点,这项工作引入了贝氏网络中概率和似然传播的Petri网表示。这样做的原因是利用Petri网的结构和动态特性来增加传播过程的透明度。因此,新颖的Petri网被称为“概率传播网”。通过示例表明,提高了对贝叶斯传播算法的理解。这对于通过贝叶斯网络精确可视化生物系统特别重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号