首页> 外文期刊>Natural Computing >Accelerating bioinspired lateral interaction in accumulative computation for real-time moving object detection with graphics processing units
【24h】

Accelerating bioinspired lateral interaction in accumulative computation for real-time moving object detection with graphics processing units

机译:通过图形处理单元在累积计算中加速受生物启发的横向交互,以实现实时移动物体检测

获取原文
获取原文并翻译 | 示例

摘要

Biologically-inspired computer vision is a research area that offers prominent directions in a large variety of fields. Several processing algorithms inspired in natural vision enable detecting moving objects from video sequences so far. One example is lateral interaction in accumulative computation (LIAC), a classical bioinspired method that has been applied to numerous environments and applications. LIAC is the implementation for computer vision of two biologically-inspired methods denominated algorithmic lateral interaction and accumulative computation. The method has traditionally reached high precision but unfortunately requires high computing times. This paper introduces a proposal based on graphics processing units in order to speed up the original sequential code. This way not only excellent performance in terms of accuracy is maintained, but also real-time is obtained. A speed-up of 67x from the parallel over its sequential counterpart is achieved for several tested video sequences.
机译:受生物启发的计算机视觉是一个研究领域,可为众多领域提供重要指导。到目前为止,自然视觉启发了几种处理算法,可以检测视频序列中的运动物体。一个示例是累积计算中的横向交互(LIAC),这是一种经典的受生物启发的方法,已应用于多种环境和应用程序。 LIAC是计算机视觉实现的两种生物启发方法,分别称为算法横向交互和累积计算。该方法传统上已达到高精度,但不幸的是,它需要很高的计算时间。本文介绍了一种基于图形处理单元的建议,以加快原始顺序代码的速度。这样,不仅保持了精度方面的优异性能,而且获得了实时性。对于几个测试的视频序列,并行处理比顺序处理的处理速度提高了67倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号