首页> 外文期刊>Natural Computing >How to ‘find’ an error minimized genetic code: neutral emergence as an alternative to direct Darwinian selection for evolutionary optimization
【24h】

How to ‘find’ an error minimized genetic code: neutral emergence as an alternative to direct Darwinian selection for evolutionary optimization

机译:如何“发现”错误最小化的遗传密码:中性突现可替代直接达尔文选择进行进化优化

获取原文
获取原文并翻译 | 示例

摘要

Error minimization (EM) of the standard genetic code (SGC) refers to the assignment of amino acids to codons in such a way that the deleterious impact of mutations is reduced. The SGC is nearly optimal for the property of EM, compared to randomly generated codes, and prompts the question of how the property arose. Brute force searching of alternative genetic codes is unlikely to have occurred, given the high number of alternative codes. Therefore, a heuristic search of "code space', the space of alternative codes, would have been necessary. Uncovering the nature of this heuristic search is key to understanding the evolution of the genetic code, and consequently the origin of life. Scenarios that rely on direct selection for the property of EM require codon reassignments to sample code space, but these are problematic mechanistically. Alternatively, it has been shown that EM may have emerged in a neutral fashion as a byproduct of the process of genetic code expansion. In this scenario, similar amino acids are added to similar codons via the gene duplication of tRNAs and aminoacyl-tRNA synthetases. Mimicking this process via simulation indeed produces high levels of EM in the resulting genetic codes. These observations imply that optimization has occurred by an alternative to direct selection, commonly viewed as the only form of evolutionary optimization followed in nature. I propose that the neutral emergence of EM produced by code expansion is a genetic algorithm but unlike direct selection, the local selection criterion (amino acid and codon similarity) is distant from the global fitness function (EM), leading to the emergent optimization of EM. By presenting this counter example I clarify how evolutionary optimization in biological systems is not restricted to direct selection, and emphasize that additional processes may lead to the production of beneficial traits, via "non-Darwinian optimization'.
机译:标准遗传密码(SGC)的错误最小化(EM)是指将氨基酸分配给密码子的方式,以减少突变的有害影响。与随机生成的代码相比,SGC对于EM的属性几乎是最佳的,并引发了该属性如何产生的问题。鉴于大量的替代密码,不太可能发生对替代遗传密码的暴力搜索。因此,将有必要对“代码空间”(即替代代码的空间)进行启发式搜索。揭露这种启发式搜索的本质是理解遗传密码的演变以及生命起源的关键。依靠直接选择来获得EM的特性需要重新分配密码子来采样代码空间,但这在机制上是有问题的,或者,这表明EM可能以中立方式出现,是遗传密码扩展过程的副产品。在这种情况下,通过tRNA和氨酰基-tRNA合成酶的基因重复将相似的氨基酸添加到相似的密码子中,通过模拟来模拟这一过程的确在产生的遗传密码中产生了高水平的EM,这些观察结果表明优化是通过替代方法实现的。直接选择,通常被认为是自然界中进化优化的唯一形式。我认为EM pr的中性出现由代码扩展产生的遗传算法是一种遗传算法,但与直接选择不同,局部选择标准(氨基酸和密码子相似性)与全局适应度函数(EM)背离,从而导致了EM的紧急优化。通过提出这个反例,我阐明了生物系统中的进化优化如何不仅限于直接选择,而且强调通过“非达尔文优化”,其他过程可能导致有益性状的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号