首页> 外文期刊>IEEE transactions on nanobioscience >A Knowledge-Driven Network-Based Analytical Framework for the Identification of Rumen Metabolites
【24h】

A Knowledge-Driven Network-Based Analytical Framework for the Identification of Rumen Metabolites

机译:一种知识驱动的基于网络的分析框架,用于鉴定瘤胃代谢物

获取原文
获取原文并翻译 | 示例

摘要

Metabolites are the final production of biochemical reactions in the rumen micro-ecological system and are very sensitive to changes in rumen microbes. Nuclear magnetic resonance (NMR) spectroscopy could both identify and quantify the metabolic composition of the ruminal fluid, which reflects the interaction between rumen microbes and diet. The main challenge of untargeted metabolomics is the compound annotation. Based on non-linear and linear associations between microbial gene abundances and integrals derived from NMR spectra, combined with knowledge of enzymatic reaction from the KEGG database, this study developed a knowledge-driven network-based analytical framework for the inference of metabolites. There were 89 potential metabolites inferred from the integral co-occurrence network. The results are supported by dissimilarity network analysis. The coexistence of non-linear and linear associations between microbial gene abundances and spectral integrals was detected. The study successfully found the corresponding integrals for acetate, butyrate and propionate, which are the major volatile fatty acids (VFA) in the rumen. This novel framework could very efficiently infer metabolites to corresponding integrals from NMR spectra.
机译:代谢物是瘤胃微生态系统中生化反应的最终生产,对瘤胃微生物的变化非常敏感。核磁共振(NMR)光谱可以识别和量化瘤胃流体的代谢组成,这反映了瘤胃微生物和饮食之间的相互作用。未明确的代谢组学的主要挑战是复合注释。基于微生物基因丰富和来自NMR光谱的积分之间的非线性和线性关联,结合来自Kegg数据库的酶促反应知识,该研究开发了一种基于网络的基于网络的分析框架,用于代谢物的推断。从积分共发生网络中推断出89个潜在的代谢物。结果得到了不相似性网络分析的支持。检测到微生物基因丰富和光谱积分之间的非线性和线性关联的共存。该研究成功地发现了乙酸盐,丁酸酯和丙酸盐的相应积分,这是瘤胃中的主要挥发性脂肪酸(VFA)。这种新颖的框架可以非常有效地从NMR光谱到相应的代谢物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号