首页> 外文期刊>Multimedia Tools and Applications >A robust texture feature extraction using the localized angular phase
【24h】

A robust texture feature extraction using the localized angular phase

机译:使用局部角相位的鲁棒纹理特征提取

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel descriptor, referred to as the localized angular phase (LAP), which is robust to illumination, scaling, and image blurring. LAP utilizes the phase information from the Fourier transform of the pixels in localized polar space with a fixed radius. The application examples of LAP are presented in terms of content-based image retrieval, classification, and feature extraction of real-world degraded images and computer-aided diagnosis using medical images. The experimental results show that the classification performance of LAP in terms of the latter application examples are better than those of local phase quantization (LPQ), local binary patterns (LBP), and local Fourier histogram (LFH). Specially, the capability of LAP to analyze degraded images and classify abnormal regions in medical images are superior to those of other methods since the best overall classification accuracy of LAP, LPQ, LBP, and LFH using degraded textures are 91.26, 61.23, 35.79, and 33.47%, respectively, while the sensitivity of LAP, LBP, and spatial gray level dependent method (SGLDM) in classifying abnormal lung regions in CT images are 100, 95.5, and 93.75%, respectively.
机译:本文提出了一种新颖的描述符,称为局部角相位(LAP),它对照明,缩放和图像模糊具有鲁棒性。 LAP利用来自具有固定半径的局部极性空间中像素的傅立叶变换的相位信息。从基于内容的图像检索,分类和真实降级图像的特征提取以及使用医学图像进行计算机辅助诊断的角度介绍了LAP的应用示例。实验结果表明,在后面的应用示例中,LAP的分类性能要优于局部相位量化(LPQ),局部二进制模式(LBP)和局部傅立叶直方图(LFH)。特别是,由于使用退化纹理的LAP,LPQ,LBP和LFH的最佳总体分类精度最高为91.26、61.23、35.79和LAP,因此LAP分析退化图像和对医学图像中异常区域进行分类的能力优于其他方法。 LAP,LBP和空间灰度依赖方法(SGLDM)对CT图像中异常肺区域进行分类的敏感性分别为33.47%,100、95.5和93.75%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号