首页> 外文期刊>Multimedia Tools and Applications >Efficient binary code indexing with pivot based locality sensitive clustering
【24h】

Efficient binary code indexing with pivot based locality sensitive clustering

机译:借助基于枢轴的局部敏感型集群实现高效的二进制代码索引

获取原文
获取原文并翻译 | 示例

摘要

High-dimensional indexing is fundamental in multimedia research field. Compact binary code indexing has achieved significant success in recent years for its effective approximation of high-dimensional data. However, most of existing binary code methods adopt linear scan to find near neighbors, which involve unnecessary computations and thus degrade search efficiency especially in large scale applications. To avoid searching codes that are not near neighbors with high probability, we propose a framework that index binary codes in clusters and only codes in relevant clusters are scanned. Consequently, Pivot Based Locality Sensitive Clustering (PLSC) is proposed and Density Adaptive Binary coding (DAB) method in PLSC clusters is presented. PLSC uses pivots to estimate similarities between data points and generates clusters based on the Locality Sensitive Hashing scheme. DAB adopts different binary code generation methods according to cluster densities. Experiments on open datasets show that offline indexing based on PLSC is efficient and DAB codes in PLSC clusters achieve significant improvement on search efficiency compared to the state of the art binary codes.
机译:高索引是多媒体研究领域的基础。紧凑的二进制代码索引近年来由于有效地逼近高维数据而获得了巨大的成功。但是,大多数现有的二进制代码方法都采用线性扫描来查找附近的邻居,这涉及不必要的计算,从而降低了搜索效率,特别是在大规模应用中。为了避免高概率地搜索不在邻居附近的代码,我们提出了一种框架,该框架对簇中的二进制代码编制索引,并且仅扫描相关簇中的代码。因此,提出了基于枢轴的局部敏感聚类(PLSC),提出了PLSC聚类中的密度自适应二进制编码(DAB)方法。 PLSC使用数据透视来估计数据点之间的相似性,并基于“局部敏感哈希”方案生成聚类。 DAB根据群集密度采用不同的二进制代码生成方法。开放数据集上的实验表明,基于PLSC的脱机索引是有效的,并且PLSC集群中的DAB代码与现有的二进制代码相比,在搜索效率上有了显着提高。

著录项

  • 来源
    《Multimedia Tools and Applications》 |2014年第2期|491-512|共22页
  • 作者单位

    Advanced Computing Research Laboratory, Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, No.6 Kexueyuan South Road, Haidian District, 100190, Beijing, China,University of the Chinese Academy of Sciences, No.80 Zhongguancun East Road, Haidian District, 100080 Beijing, China;

    Advanced Computing Research Laboratory, Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, No.6 Kexueyuan South Road, Haidian District, 100190, Beijing, China;

    Advanced Computing Research Laboratory, Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, No.6 Kexueyuan South Road, Haidian District, 100190, Beijing, China;

    Advanced Computing Research Laboratory, Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, No.6 Kexueyuan South Road, Haidian District, 100190, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High dimensional indexing; Similarity search; Pivot based locality sensitive clustering; Density adaptive binary coding;

    机译:高维索引;相似度搜索;基于枢轴的局部敏感聚类;密度自适应二进制编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号