首页> 外文期刊>Multimedia Tools and Applications >Support vector machine approach for virtual machine migration in cloud data center
【24h】

Support vector machine approach for virtual machine migration in cloud data center

机译:支持向量机在云数据中心迁移虚拟机的方法

获取原文
获取原文并翻译 | 示例

摘要

The social media services are popular with Internet services today, such as Facebook, YouTube, Plurk and Twitter. However, the enormous interactions among human beings also result in highly computational costs. The requested resources and demands of some specific social media services are changing severely, and the virtual machines (VMs) exhaust the computing resource of physical machine (PM). Thus this will lead to VM migration. Many researchers investigate how to stabilize the average utilization of virtual machines and physical machines in cloud data center. In this paper, we formulated the VM migration problem in cloud data center based on mixed integer linear programming (MILP). Then, the VM allocation algorithm was proposed to allocate the VMs among the PMs, which is based on the Support Vector Machine (SVM). According to the training process during a specific time, the minimum numbers of VM migration and maximum resource utilization of PMs were accomplished. As the allocation case and simulation results showed, we achieved the stable and low-cost for social media services in cloud data center.
机译:当今,社交媒体服务在Internet服务中很流行,例如Facebook,YouTube,Plurk和Twitter。但是,人与人之间的巨大互动也导致了高昂的计算成本。一些特定的社交媒体服务所请求的资源和需求正在急剧变化,并且虚拟机(VM)耗尽了物理机(PM)的计算资源。因此,这将导致VM迁移。许多研究人员正在研究如何稳定云数据中心中虚拟机和物理机的平均利用率。在本文中,我们基于混合整数线性规划(MILP)提出了云数据中心中的VM迁移问题。然后,提出了一种基于支持向量机(SVM)的VM分配算法,用于在PM之间分配VM。根据特定时间的培训过程,可以实现最少的VM迁移次数和PM的最大资源利用率。如分配案例和仿真结果所示,我们在云数据中心实现了社交媒体服务的稳定和低成本。

著录项

  • 来源
    《Multimedia Tools and Applications》 |2015年第10期|3419-3440|共22页
  • 作者单位

    Natl Cent Univ, Dept Comp Sci & Informat Engn, Jhongli 32001, Taoyuan County, Taiwan;

    Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China;

    Natl Cent Univ, Dept Comp Sci & Informat Engn, Jhongli 32001, Taoyuan County, Taiwan;

    Natl Ilan Univ, Dept Elect Engn, Ilan 26047, Taiwan|Natl Ilan Univ, Dept Comp Sci & Informat Engn, Ilan 26047, Taiwan|Natl Dong Hwa Univ, Dept Elect Engn, Shoufeng 97401, Hualien, Taiwan;

    Univ Shanghai Sci & Technol, Network Ctr, Shanghai 200093, Peoples R China|Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social media service; Load balance; Support vector machine; Mixed integer linear programming; Cloud data center;

    机译:社交媒体服务;负载平衡;支持向量机;混合整数线性规划;云数据中心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号