首页> 外文期刊>Multimedia Tools and Applications >Wireless image fuzzy recognition system for human activity
【24h】

Wireless image fuzzy recognition system for human activity

机译:用于人类活动的无线图像模糊识别系统

获取原文
获取原文并翻译 | 示例

摘要

This study developed a fuzzy image model system for transmitting data over a wireless network channel to efficiently realize human activity in virtual images presentation. Because of the excellent mobile characteristics of wireless sensing networks, small devices are very desirable for local-area deployment. Complex model identification problems, such as acquiring and handling wireless image patterns, require analyzing a large amount of data, which occupies a long time at an acceptable transmission quality. In the proposed system, a cross-layer access method is employed to improve the visual clarity. Image packets are assigned to tune the category queue priority, with the probability allocated through a Markov chain model. This is a favorable approach to balancing the wireless image transmission traffic load. The similarity mixing algorithm, which is based on the maximal similarity and minimal disparity concepts, is used to aggregate the primary image features. The collected image patterns with converted coding vectors are efficiently trained through a human feature recognition procedure to generate a human model. A human action is received in real time from wireless sensing networks, and the image feature is retrieved by approximating a higher compatibility in practice simulations. The fuzzy image model uses the simple region-based evaluation and flexible extraction concepts to describe appropriate image partitions. This technology provides the highest possibility of human feature maps to identify the current action and offers a simple method for detecting human activity in indoor environments. Several human sensing and feature mapping experiments were conducted to verify the feasibility of applying the image recognition technology in nonlinear, time variant, and uncertain human activity problems. This study integrates numerous advantages from the mobility of wireless sensing; the proposed system efficiently controls congested image packages and easily confirms their related human activity. Experimental results verify that 60 testing frames approach about 96.6% accuracy within 3 s. These evaluations illustrate that it is applicable usage in some indoor environments.
机译:这项研究开发了一种模糊图像模型系统,用于通过无线网络通道传输数据,以有效地实现虚拟图像表示中的人类活动。由于无线传感网络具有出色的移动特性,因此小型设备非常适合局域部署。诸如获取和处理无线图像模式之类的复杂模型识别问题需要分析大量数据,这些数据在可接受的传输质量下会占用很长的时间。在提出的系统中,采用跨层访问方法来提高视觉清晰度。分配图像数据包以调整类别队列优先级,并通过马尔可夫链模型分配概率。这是一种平衡无线图像传输流量负载的有利方法。基于最大相似度和最小视差概念的相似度混合算法用于聚合主要图像特征。通过人类特征识别程序有效地训练了具有转换后的编码向量的所收集图像模式,以生成人类模型。从无线传感网络实时接收人为动作,并通过逼近实际仿真中的更高兼容性来检索图像特征。模糊图像模型使用简单的基于区域的评估和灵活的提取概念来描述适当的图像分区。这项技术提供了人类特征图识别当前动作的最大可能性,并提供了一种检测室内环境中人类活动的简单方法。进行了几次人体感应和特征映射实验,以验证将图像识别技术应用于非线性,时变和不确定的人类活动问题的可行性。这项研究综合了无线传感移动性的众多优势;提出的系统可以有效控制拥挤的图像包,并轻松确认其相关的人类活动。实验结果验证了60个测试框架在3 s内可达到约96.6%的精度。这些评估表明,它适用于某些室内环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号