首页> 外文期刊>Multimedia Tools and Applications >Is visual saliency useful for content-based image retrieval?
【24h】

Is visual saliency useful for content-based image retrieval?

机译:视觉显着性对基于内容的图像检索有用吗?

获取原文
获取原文并翻译 | 示例

摘要

In the real world, people often focus on the distinctive objects (Salient Regions, SR) in a scene. Thus, a number of saliency detection methods are introduced into content-based image retrieval (CBIR), which is often with Bag of Words (BoW) model. These methods aim to use the saliency map to prune keypoints or discard the keypoints from the background. However, these methods do not consider the background of the image and the characteristics of the dataset itself. In this paper we focus on the following two issues: 1) whether the saliency pruning method is useful for image retrieval in different kinds of datasets (e.g., salient/cluttered, mixed image database); 2) we test the effectiveness of the discarded parts from the background (Non-Salient Regions, Non-SR) for different kinds of image database. In order to demonstrate the performance of using visual saliency, we conduct experiments on two publicly available database (Ukbench, Holidays). The experiments reveal that the way of using saliency map to filter a small amount of key-points can clearly improve the performance of CBIR, and the keypoints in the background are also useful in some kinds of image datasets.
机译:在现实世界中,人们经常关注场景中的独特对象(Salient Regions,SR)。因此,许多显着性检测方法被引入到基于内容的图像检索(CBIR)中,这通常与词袋(BoW)模型一起使用。这些方法旨在使用显着性图修剪关键点或从后台丢弃关键点。但是,这些方法没有考虑图像的背景和数据集本身的特征。在本文中,我们关注以下两个问题:1)显着性修剪方法是否可用于不同类型的数据集(例如显着/杂乱,混合图像数据库)中的图像检索; 2)对于不同种类的图像数据库,我们从背景(非突出区域,非SR)测试了丢弃部分的有效性。为了演示使用视觉显着性的性能,我们在两个公开可用的数据库(Ukbench,Holidays)上进行了实验。实验表明,利用显着性图过滤少量关键点的方法可以明显提高CBIR的性能,并且背景中的关键点在某些图像数据集中也很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号