首页> 外文期刊>Multimedia Tools and Applications >A CAD system design to diagnosize alzheimers disease from MRI brain images using optimal deep neural network
【24h】

A CAD system design to diagnosize alzheimers disease from MRI brain images using optimal deep neural network

机译:利用最优深神经网络从MRI脑形象诊断阿尔茨海默病的CAD系统设计

获取原文
获取原文并翻译 | 示例

摘要

Memory related issues in brain are mainly caused by Alzheimer disease (AD) which is the most common form of dementia. This disease must be diagnosed in its prodromal stage known as Mild Cognitive Impairment (MCI) also it needs an accurate detection and classification technique. In this paper, a computer-aided diagnosis (CAD) system is implemented on Magnetic resonance imaging (MRI) data from ADNI database. This disease highly affects the Hippocampus and cerebrum regions which are normally found in the grey matter region of brain. At first, MNI/ICBM atlas space of every three dimensional MRI images are constructed using normalization procedure, then grey matter region of brain is extracted. Subsequently, feature extraction is done by two dimensional Gabor filter in three scales and eight orientations. Then, the proposed optimal Deep Neural Network (DNN) classifier is used to classify the images as Cognitive normal (CN), Alzheimer disease (AD), and Mild Cognitive Impairment (MCI). Here, DNN classifier is optimized by selecting optimal weight parameter using Enhanced Squirrel Search Algorithm. The experimental results prove an efficiency of the proposed method using MR images. The proposed algorithm beats existing techniques in terms of accuracy, sensitivity, and specificity.
机译:大脑中的内存相关问题主要是由阿尔茨海默病(AD)引起的,这是最常见的痴呆形式。这种疾病必须诊断为称为轻度认知障碍(MCI)的产前阶段,也需要一种准确的检测和分类技术。本文在来自ADNI数据库的磁共振成像(MRI)数据上实现了一种计算机辅助诊断(CAD)系统。这种疾病高度影响海马和大脑地区,这些地区通常在大脑的灰质区域中发现。首先,使用归一化过程构建每三维MRI图像的MNI / ICBM ATLAS空间,然后提取大脑的灰质区域。随后,特征提取由三个尺度和八个取向的二维Gabor滤波器完成。然后,所提出的最佳深神经网络(DNN)分类器用于将图像分类为认知正常(CN),阿尔茨海默病(AD)和轻度认知障碍(MCI)。这里,通过使用增强的松鼠搜索算法选择最佳权重参数来优化DNN分类器。实验结果证明了使用MR图像的提出方法的效率。所提出的算法在准确性,灵敏度和特异性方面击败了现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号