首页> 外文期刊>Multimedia Tools and Applications >Mean distance local binary pattern: a novel technique for color and texture image retrieval for liver ultrasound images
【24h】

Mean distance local binary pattern: a novel technique for color and texture image retrieval for liver ultrasound images

机译:平均距离局部二元图案:一种肝脏超声图像颜色和纹理图像检索的新技术

获取原文
获取原文并翻译 | 示例

摘要

A rapid growth in medical ultrasound database makes it difficult for medical practitioners to manage and search relevant data with good efficiency. Hence, a novel image retrieval technique using Mean Distance Local Binary Pattern (Mean Distance LBP) has been proposed for content-based image retrieval. The conventional local binary pattern (LBP) converts every pixel of image into a binary pattern based on their relationship with neighbourhood pixels. The proposed feature descriptor differs from local binary pattern as it transforms the mutual relationship of all neighbouring pixels in a binary pattern based on their standard deviation templates as well as Euclidean distance from the center pixel. Color feature and Gray Level Co-occurrence Matrix have also been used in this work. To prove the excellence of the proposed method, experiments have been conducted on two different databases of natural images and face images. Further, the method is applied on real time ultrasound database for retrieval of liver images from a set of ultrasound images of various organs. The performance has been observed using well-known evaluation measures, precision and recall, and compared with some state-of-art local patterns. Comparison shows a significant improvement in the proposed method over existing methods.
机译:医学超声数据库的快速增长使得医学从业者难以以良好的效率管理和搜索相关数据。因此,已经提出了一种用于基于内容的图像检索的使用平均距离局部二进制图案(平均距离LBP)的新型图像检索技术。传统的局部二进制模式(LBP)基于与邻域像素的关系将图像的每个像素转换为二进制图案。所提出的特征描述符与局部二进制图案不同,因为它基于其标准偏差模板以及距中心像素的欧几里德距离在二进制模式中转换所有相邻像素的相互关系。在这项工作中也使用了彩色特征和灰度共同发生矩阵。为了证明所提出的方法的卓越,实验已经在两种不同的自然图像和面部图像数据库上进行。此外,该方法应用于实时超声数据库,用于从各种器官的一组超声图像检索肝脏图像。使用着名的评估措施,精度和召回,并与某些最先进的本地模式进行了观察到该性能。比较显示了在现有方法上提出的方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号