首页> 外文期刊>Multimedia Tools and Applications >Innovative lane detection method to increase the accuracy of lane departure warning system
【24h】

Innovative lane detection method to increase the accuracy of lane departure warning system

机译:创新车道检测方法,以提高车道脱离警报系统的准确性

获取原文
获取原文并翻译 | 示例

摘要

Lane departure warning is one important feature in Advanced Driver Assistance Systems (ADAS), which aims to improve overall safety on the road. However, challenges such as inconsistent shadows and fading lane markings often plague the road surface and cause the lane detection system to produce false warnings. Users are aggravated by the warning and tend to disable this safety feature. This paper proposes an efficient Gabor filtering-based lane detection method to overcome the aforementioned conditions and improves the accuracy of lane departure warning system. Furthermore, it serves as a cost-effective solution to a lane departure warning problem, allowing it to be widely deployed. It is heuristically found that lane marking has a general directional property, which can be further enhanced by Gabor filter while suppressing inconsistent road shadows and road markers. Enhanced lane markings are then subjected to adaptive canny edge detection to extract distinct edge markings. Lastly, Hough transformation is applied to label the correct lane candidates on the road surface. Furthermore, we generate a dataset of Malaysia road with various driving conditions. As a proof of concept, a lane departure warning system is built based on the proposed lane detection method, which is able to achieve an accuracy of 93.67% for lane detection and 95.24% for lane departure warning tested on our challenging dataset. The codes are implemented on Raspberry pi 3B and installed in a vehicle for real-time application. The codes are multithreaded and found to achieve a desirable frame speed of 20 fps at 75% CPU utilization.
机译:车道出发警告是先进的驾驶辅助系统(ADAS)的一个重要功能,旨在提高道路上的整体安全。然而,诸如不一致的阴影和衰落车道标记的挑战通常会困扰道路表面并导致车道检测系统产生虚假警告。用户被警告恶化,并倾向于禁用此安全功能。本文提出了一种高效的Gabor过滤的车道检测方法,以克服上述条件,提高车道脱离警告系统的准确性。此外,它用作道路偏离警告问题的经济有效的解决方案,允许它被广泛部署。它的启发式发现,车道标记具有一般定向性,可以通过Gabor过滤器进一步增强,同时抑制不一致的道路阴影和道路标记。然后对增强的车道标记进行自适应罐头边缘检测以提取不同的边缘标记。最后,霍夫转型被应用于在路面上标记正确的车道候选。此外,我们在各种驾驶条件下生成马来西亚道路的数据集。作为概念证明,基于所提出的车道检测方法,建立了一个车道脱离警告系统,该方法能够在我们具有挑战性的数据集上测试车道检测的精度为93.67%,95.24%。该代码在Raspberry Pi 3b上实现并安装在车辆中进行实时应用。多线程的代码,发现,在75%的CPU利用率下实现20 fps的理想帧速。

著录项

  • 来源
    《Multimedia Tools and Applications》 |2021年第2期|2063-2080|共18页
  • 作者单位

    School of Engineering Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Subang Jaya Selangor Malaysia;

    School of Engineering Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Subang Jaya Selangor Malaysia;

    School of Engineering Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Subang Jaya Selangor Malaysia;

    School of Information Technology Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Subang Jaya Selangor Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lane departure warning; ADAS; Gabor filter; Hough transformation; Real-time application;

    机译:车道出发警告;阿斯;Gabor过滤器;霍夫转型;实时应用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号