首页> 外文期刊>Multimedia Tools and Applications >Unsupervised video summarization via clustering validity index
【24h】

Unsupervised video summarization via clustering validity index

机译:通过聚类有效性索引的无监督视频摘要

获取原文
获取原文并翻译 | 示例

摘要

Although lots of the prior works have been proposed to solve the representative selection problem of video summarization, the main difficulty is still left for determining the optimal representatives' number of the raw videos that are not annotated. In this paper, we propose an unsupervised video summarization method by motion-based frame selection and a novel clustering validity indexes to determine the optimal representatives of the original video. The proposed framework segments shots and selects candidate frames by evaluating their forward and backward motion and can automatically select representatives to highlight all the significant visual properties. Shots are segmented uniformly and the frame with the largest motion is extracted in each segmentation to form the video candidate frame subset. Then Affinity Propagation combined with the validity index is used to automatically select the optimal representatives from the candidate frame subset. Our experimental result on several benchmark datasets demonstrates the robustness and effectiveness of our proposed method.
机译:虽然已经提出了许多事先作品来解决视频摘要的代表性选择问题,但主要难度仍然留下来确定未注释的最佳代表的原始视频的数量。在本文中,我们通过基于运动的帧选择和新的聚类有效性索引提出了无监督的视频摘要方法,以确定原始视频的最佳代表。所提出的框架段通过评估它们的前向和向后运动来拍摄并选择候选帧,并可以自动选择代表以突出所有显着的视觉属性。截图均匀地分割,并且在每个分段中提取具有最大运动的帧以形成视频候选帧子集。然后,与有效性索引组合的关联传播用于自动选择来自候选帧子集的最佳代表。我们在几个基准数据集上的实验结果展示了我们所提出的方法的稳健性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号