首页> 外文期刊>Multimedia Tools and Applications >PRATIT: a CNN-based emotion recognition system using histogram equalization and data augmentation
【24h】

PRATIT: a CNN-based emotion recognition system using histogram equalization and data augmentation

机译:Pratit:使用直方图均衡和数据增强的基于CNN的情感识别系统

获取原文
获取原文并翻译 | 示例

摘要

Emotions are spontaneous feelings that are accompanied by fluctuations in facial muscles, which leads to facial expressions. Categorization of these facial expressions as one of the seven basic emotions - happy, sad, anger, disgust, fear, surprise, and neutral is the intention behind Emotion Recognition. This is a difficult problem because of the complexity of human expressions, but is gaining immense popularity due to its vast number of applications such as predicting behavior. Using deeper architectures has enabled researchers to achieve state-of-the-art performance in emotion recognition. Motivated from the aforementioned discussion, in this paper, we propose a model named as PRATIT, used for facial expression recognition that uses specific image preprocessing steps and a Convolutional Neural Network (CNN) model. In PRATIT, preprocessing techniques such as grayscaling, cropping, resizing, and histogram equalization have been used to handle variations in the images. CNNs accomplish better accuracy with larger datasets, but there are no freely accessible datasets with adequate information for emotion recognition with deep architectures. Therefore, to handle the aforementioned issue, we have applied data augmentation in PRATIT, which helps in further fine tuning the model for performance improvement. The paper presents the effects of histogram equalization and data augmentation on the performance of the model. PRATIT with the usage of histogram equalization during image preprocessing and data augmentation surpasses the state-of-the-art results and achieves a testing accuracy of 78.52%.
机译:情绪是自发的感受,伴随着面部肌肉的波动,这导致面部表情。这些面部表情的分类是七种基本情绪之一 - 快乐,悲伤,愤怒,厌恶,恐惧,惊喜和中立是情感认可背后的意图。由于人类表达的复杂性,这是一个难题,而是由于其广泛的应用,例如预测行为的广泛应用,这是巨大的普及。使用更深层次的架构使研究人员能够在情感认可中实现最先进的性能。在上述讨论中,在本文中,我们提出了一种名为Pratit的模型,用于面部表情识别,该表达识别使用特定图像预处理步骤和卷积神经网络(CNN)模型。在PRATIT中,已经使用诸如灰度,裁剪,调整大小和直方图均衡的预处理技术来处理图像的变化。 CNNS完成更好的数据集准确性,但没有自由访问的数据集,具有深入架构的情感识别的充分信息。因此,要处理上述问题,我们在Pratit应用了数据增强,这有助于进一步调整模型进行性能改进。本文提出了直方图均衡和数据增强对模型性能的影响。在图像预处理期间使用直方图均衡和数据增强超过最先进的结果并实现了78.52%的测试精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号