首页> 外文期刊>Multimedia Tools and Applications >Detecting seam carved images using uniform local binary patterns
【24h】

Detecting seam carved images using uniform local binary patterns

机译:使用统一的局部二进制模式检测缝雕像

获取原文
获取原文并翻译 | 示例

摘要

Seam carving is widely used excellent content-aware image scaling method. When an image is processed by seam carving, its local texture changes. Local binary patterns is an excellent local descriptor for describing the local texture of an image. In this paper, a blind detection based uniform local binary patterns(ULBP) is proposed to detect seam-carved image. Firstly, the image is transformed into gray-scale image. Then the ULBP histogram features and seam features are extracted from the gray-scale image. Finally support vector machine (SVM) is adopted as classifier to train and test those features to identify whether an image is subjected to seam carving or not. Wei et al. (Pattern Recogn Lett 36:100-106 2014) method and Ryu et al. (IEICE Trans Inf Syst 97(5): 1304-1311 2014) method are selected as the benchmark. Extensive compared experiments are conducted by the three methods, respectively. Experimental results show that the proposed method has the best performance among the three methods under a variety of setting.
机译:缝雕广泛使用出色的内容感知图像缩放方法。通过扫描扫描处理图像,其本地纹理变化。本地二进制模式是用于描述图像的本地纹理的优异本地描述符。在本文中,提出了一种基于盲检测的统一局部二进制图案(ULBP)以检测接缝雕像。首先,将图像转换为灰度图像。然后从灰度图像中提取ULBP直方图特征和缝隙特征。最后支持向量机(SVM)被用作分类器以培训和测试这些功能以识别图像是否被接缝雕刻。魏等人。 (图案识别Lett 36:100-106 2014)方法和Ryu等人。 (Ieice Trans INF SYST 97(5):1304-1311 2014)选择方法作为基准。广泛的比较实验分别由三种方法进行。实验结果表明,该方法在各种设定下具有三种方法的最佳性能。

著录项

  • 来源
    《Multimedia Tools and Applications》 |2020年第14期|8415-8430|共16页
  • 作者单位

    Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation School of Computer and Communication Engineering Changsha University of Science and Technology Changsha 41(XX)4 China;

    School of Information Science and Engineering Hunan University Changsha 410082 China;

    Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation School of Computer and Communication Engineering Changsha University of Science and Technology Changsha 41(XX)4 China;

    Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation School of Computer and Communication Engineering Changsha University of Science and Technology Changsha 41(XX)4 China;

    School of Computing Science and Engineering Vellore Institute of Technology (VIT) Vellore 632014 India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Seam carving; Images retargeting; Uniform local binary patterns (ULBP); Support vector machine;

    机译:缝雕刻;图像retargeting;统一的局部二进制模式(ULBP);支持矢量机器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号