首页> 外文期刊>IEEE transactions on multimedia >Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects
【24h】

Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

机译:边缘势函数(EPF)和遗传算法(GA)用于基于边缘的视觉对象匹配

获取原文
获取原文并翻译 | 示例

摘要

Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of edge potential functions (EPF) with a powerful matching tool based on genetic algorithms (GAs). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies
机译:已知边缘是数字图像内容的语义丰富表示。然而,它们在实际应用中的使用有时受到计算和复杂性约束的限制。在本文中,提出了一种新方法,该方法通过将边缘势函数(EPF)的概念与基于遗传算法(GA)的强大匹配工具相结合,解决了数字图像中视觉对象的匹配问题。 EPF可以很容易地从边缘贴图开始计算,并为匹配的轮廓提供一种吸引人的图案,GA可以方便地利用它们。在不同图像匹配应用程序的框架中执行了一些测试。与现有方法相比,所获得的结果清楚地概述了所提出方法的潜力

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号