首页> 外文期刊>Multimedia, IEEE Transactions on >Quaternionic Signal Processing Techniques for Automatic Evaluation of Dance Performances From MoCap Data
【24h】

Quaternionic Signal Processing Techniques for Automatic Evaluation of Dance Performances From MoCap Data

机译:四元离子信号处理技术,可从MoCap数据自动评估舞蹈表演

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of automatic dance performance evaluation from human Motion Capture (MoCap) data is addressed. A novel framework is presented, using data captured by Kinect-based human skeleton tracking, where the evaluation of user’s performance is achieved against a gold-standard performance of a teacher. The framework addresses several technical challenges, including global and local temporal synchronization, spatial alignment and comparison of two “dance motion signals.” Towards the solution of these technical challenges, a set of appropriate quaternionic vector-signal processing methodologies is proposed, where the 4D (spatiotemporal) human motion data are represented as sequences of pure quaternions. Such a quaternionic representation offers several advantages, including the facts that joint angles and rotations are inherently encoded in the phase of quaternions and the three coordinates variables ($X,Y,Z$) are treated jointly, with their intra-correlations being taken into account. Based on the theory of quaternions, a number of advantageous algorithms are formulated. Initially, global temporal synchronization of dance MoCap data is achieved by the use of quaternionic cross-correlations, which are invariant to rigid spatial transformations between the users. Secondly, a quaternions-based algorithm is proposed for the fast spatial alignment of dance MoCap data. Thirdly, the MoCap data can be temporally synchronized in a local fashion, using Dynamic Time Warping techniques adapted to the specific problem. Finally, a set of quaternionic correlation-based measures (scores) are proposed for evaluating and ranking the performance of a dancer. These quaternions-based scores are invariant to rigid transformations, as proved and demonstrated. A total score metric, through a weighted combination of three different metrics is proposed, where the weights are optimized us- ng Particle Swarm Optimization (PSO). The presented experimental results using the $hbox{Huawei/3DLife/EMC}^2$ dataset are promising and verify the effectiveness of the proposed methods.
机译:在本文中,解决了根据人类运动捕捉(MoCap)数据自动评估舞蹈表演的问题。通过使用基于Kinect的人体骨骼跟踪所捕获的数据,提出了一种新颖的框架,其中,根据教师的金标准表现来评估用户的表现。该框架解决了一些技术挑战,包括全局和局部时间同步,空间对齐以及两个“舞蹈运动信号”的比较。为了解决这些技术难题,提出了一组适当的四元离子矢量信号处理方法,其中将4D(时空)人体运动数据表示为纯四元数序列。这样的四元数表示具有几个优点,其中包括以下事实:关节角度和旋转在四元数的相位中固有地编码,并且三个坐标变量($ X,Y,Z $)被一起对待,并且将它们的内相关性考虑在内。帐户。基于四元数理论,制定了许多有利的算法。最初,舞蹈MoCap数据的全局时间同步是通过使用四元数互相关来实现的,该四元互相关对于用户之间的刚性空间变换是不变的。其次,提出了一种基于四元数的MoMo数据快速空间对齐算法。第三,可以使用适用于特定问题的动态时间规整技术以本地方式在时间上同步MoCap数据。最后,提出了一套基于四元离子相关性的度量(分数),用于评估和排名舞者的表现。这些基于四元数的分数对于刚性变换是不变的,这已得到证明和证明。通过三个不同指标的加权组合,提出了总评分指标,其中权重使用粒子群优化(PSO)进行了优化。使用$ hbox {Huawei / 3DLife / EMC} ^ 2 $数据集提出的实验结果很有希望,并验证了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号