首页> 外文期刊>Multimedia, IEEE Transactions on >Hierarchical Reasoning Network for Pedestrian Attribute Recognition
【24h】

Hierarchical Reasoning Network for Pedestrian Attribute Recognition

机译:步行属性识别的分层推理网络

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian attribute recognition, which can benefit other tasks such as person re-identification and pedestrian retrieval, is very important in video surveillance related tasks. In this paper, we observe that the existing methods tackle this problem from the perspective of multi-label classification without considering the hierarchical relationships among the attributes. In human cognition, the attributes can be categorized according to their semantic/abstraction levels. The high-level attributes can be predicted by reasoning from the low-level and medium-level attributes, while the recognition of the low-level and medium-level attributes can be guided by the high-level attributes. Based on this attribute categorization, we propose a novel Hierarchical Reasoning Network (HR-Net), which can hierarchically predict the attributes at different abstraction levels in different stages of the network. We also propose an attribute reasoning structure to exploit the relationships among the attributes at different semantic levels. Experimental results demonstrate that the proposed network gives superior performances compared to the state-of-the-art techniques.
机译:步行者属性识别,可以使如人重新识别和行人检索等其他任务有益,这在视频监控相关任务中非常重要。在本文中,我们观察到现有方法从多标签分类的角度来解决这个问题,而不考虑属性之间的分层关系。在人类认知中,可以根据其语义/抽象级别对属性进行分类。可以通过从低级和中级属性推理来预测高级属性,而识别低级和中级属性可以由高级属性引导。基于此属性分类,我们提出了一种新的分层推理网络(HR-Net),其可以在网络的不同阶段分层地预测不同抽象级别的属性。我们还提出了一个属性推理结构来利用不同语义层面的属性之间的关系。实验结果表明,与最先进的技术相比,所提出的网络赋予卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号