首页> 外文期刊>IEEE transactions on multimedia >Codebook-Free Compact Descriptor for Scalable Visual Search
【24h】

Codebook-Free Compact Descriptor for Scalable Visual Search

机译:用于扩展可视搜索的无码本紧凑描述符

获取原文
获取原文并翻译 | 示例

摘要

The MPEG compact descriptors for visual search (CDVS) is a standard toward image matching and retrieval. To achieve high retrieval accuracy over a large scale image/video dataset, recent research efforts have demonstrated that employing extremely high-dimensional descriptors such as the Fisher vector (FV) and the vector of locally aggregated descriptors (VLAD) can yield good performance. Since the FV (or VLAD) possesses high discriminability but small visual vocabulary, it has been adopted by CDVS to construct a global compact descriptor. In this paper, we study the development of global compact descriptors in the completed CDVS standard and the emerging compact descriptors for video analysis (CDVA) standard, in which we formulate the FV (or VLAD) compression as a resource-constrained optimization problem. Accordingly, we propose a codebook-free aggregation method via dual selection to generate a global compact visual descriptor, which supports fast and accurate feature matching free of large visual codebooks, fulfilling the low memory requirement of mobile visual search at significantly reduced latency. Specifically, we investigate both sample-specific Gaussian component redundancy and bit dependency within a binary aggregated descriptor to produce compact binary codes. Our technique contributes to the scalable compressed Fisher vector (SCFV) adopted by the CDVS standard. Moreover, the SCFV descriptor is currently serving as the frame-level hand-crafted video feature, which inspires the inheritance of CDVS descriptors for the emerging CDVA standard. Furthermore, we investigate the positive complementary effect of our standard compliant compact descriptor and deep learning based features extracted from convolutional neural networks with significant mean average precision gains. Extensive evaluation over benchmark databases shows the significant merits of the codebook-free binary codes for scalable visual search.
机译:用于视觉搜索的MPEG压缩描述符(CDVS)是图像匹配和检索的标准。为了在大规模图像/视频数据集上实现较高的检索精度,最近的研究工作表明,使用极高维的描述符(例如Fisher向量(FV)和局部聚合描述符的向量(VLAD))可以产生良好的性能。由于FV(或VLAD)具有较高的可识别性,但视觉词汇量较小,因此CDVS已采用它来构造全局紧凑的描述符。在本文中,我们研究了完整的CDVS标准中的全局压缩描述符的发展以及新兴的视频分析压缩描述符(CDVA)标准,其中我们将FV(或VLAD)压缩公式化为资源受限的优化问题。因此,我们提出了一种通过双重选择的无码本聚合方法,以生成全局紧凑的视觉描述符,该描述符支持快速且准确的特征匹配,而无需大型视觉码本,从而满足了移动视觉搜索在低延迟下的低内存需求。具体来说,我们研究样本特定的高斯分量冗余和二进制聚合描述符中的位相关性,以生成紧凑的二进制代码。我们的技术有助于CDVS标准采用的可伸缩压缩Fisher向量(SCFV)。此外,SCFV描述符当前用作帧级手工制作的视频功能,这激发了新兴CDVA标准对CDVS描述符的继承。此外,我们研究了符合标准的紧凑型描述符和从卷积神经网络中提取的基于深度学习的特征的积极补充作用,这些特征具有明显的平均平均精度提高。对基准数据库的广泛评估显示了无码本的二进制代码在可扩展的可视搜索中的显着优点。

著录项

  • 来源
    《IEEE transactions on multimedia》 |2019年第2期|388-401|共14页
  • 作者单位

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China|PKU NTU Joint Res Inst, Singapore 639798, Singapore;

    PKU NTU Joint Res Inst, Singapore 639798, Singapore|Tsinghua Univ, Future Lab, Beijing 100084, Peoples R China;

    Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100080, Peoples R China;

    Inst Infocomm Res, Singapore 138634, Singapore;

    Inst Infocomm Res, Singapore 138634, Singapore;

    SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA;

    Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100080, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visual Search; Compact Descriptor; CDVS; CDVA; Codebook free; Feature Descriptor Aggregation;

    机译:视觉搜索;紧凑描述符;CDVS;CDVA;无密码本;功能描述符聚合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号