首页> 外文期刊>Multidimensional Systems and Signal Processing >Statistical methods to estimate vehicle count using traffic cameras
【24h】

Statistical methods to estimate vehicle count using traffic cameras

机译:使用交通摄像头估算车辆数量的统计方法

获取原文
获取原文并翻译 | 示例

摘要

Traffic camera has played an important role in enabling intelligent and real-time traffic monitoring and control. In this paper, we focus on establishing a correlation model for the traffic cameras’ vehicle counts and increase the spatial-resolution of a city’s vehicle counting traffic camera system by means of correlation-based estimation. We have developed two methods for constructing traffic models, one using statistical machine learning based on Gaussian models and the other using analytical derivation from the origin-destination (OD) matrix. The Gaussian-based method outperforms existing correlation coefficient based methods. When training data are not available, our analytical method based on OD matrix can still perform well. When there is only a limited number of cameras, we develop heuristic algorithms to determine the most desirable locations to place the cameras so that the errors of traffic estimations at the locations without traffic cameras are minimized. We show some improvements in the performance of our proposed methods over an existing method in a variety of simulations.
机译:交通摄像头在实现智能实时交通监控方面发挥了重要作用。在本文中,我们着重于为交通摄像机的车辆计数建立相关模型,并通过基于相关的估计来提高城市车辆计数交通摄像机系统的空间分辨率。我们已经开发了两种方法来构建交通模型,一种方法是使用基于高斯模型的统计机器学习,另一种方法是使用基于原点(OD)矩阵的分析推导。基于高斯的方法优于现有的基于相关系数的方法。当没有训练数据时,我们基于OD矩阵的分析方法仍然可以很好地执行。当摄像机数量有限时,我们会开发启发式算法来确定放置摄像机的最理想位置,从而将没有交通摄像机的位置的交通估算误差降至最低。在各种模拟中,我们显示了相对于现有方法,我们提出的方法在性能方面的一些改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号