首页> 外文期刊>Multidimensional Systems and Signal Processing >The computation of purity filtrations over commutative noetherian rings of operators and their application to behaviors
【24h】

The computation of purity filtrations over commutative noetherian rings of operators and their application to behaviors

机译:交换算子交换环上纯度过滤的计算及其在行为中的应用

获取原文
获取原文并翻译 | 示例

摘要

Due to the theoretical work and computer implementations of, for instance, Barakat, Quadrat and Robertz and their coauthors the theory of finitely generated (f.g.) modules over non-commutative regular noetherian rings of partial differential operators with variable coefficients like the Weyl algebras and over other similar rings has become constructive in recent years. In particular these authors compute the purity or grade filtration of a f.g. module by homological means and discuss its significance for the associated behavior. Pommaret and Quadrat noted this significance already in 1999. In this note it is shown that over an arbitrary commutative noetherian ring of operators the purity filtration of a finitely generated module can be easily computed by means of the the primary decomposition of its zero submodule and indeed, with smaller complexity, by inductively computing equidimensional parts. In most books on Constructive Commutative Algebra the connection between this primary decomposition, the equidimensional parts and the purity filtration is implicitly stated for cyclic modules. For many commutative rings of operators the standard signal modules are injective cogenerators. In this case the purity filtration of the module gives rise to a corresponding filtration of the dual behavior, and the primary decomposition induces additional sum representations of the pure dimensional factors of this filtration. For non-commutative rings of operators the standard signal modules are in general neither injective nor cogenerators, and for such signal modules the usefulness of the purity filtration of the module for the determination of the behavior and its structural properties is not obvious. It is also shown by a counter-example that dimensional purity of the module or behavior does not imply dimensional purity of the initial conditions according to Riquier of the associated homogeneous Cauchy problem.
机译:由于Barakat,Quadrat和Robertz等人的理论工作和计算机实现,他们的合著者对具有可变系数的偏微分算子(如Weyl代数)及其上的非可交换正则Noether环上的有限生成(fg)模块的理论近年来,其他类似的戒指也变得具有建设性。特别是这些作者计算了f.g.的纯度或等级过滤。通过同源手段进行讨论,并讨论其对于相关行为的意义。 Pommaret和Quadrat早在1999年就已经注意到了这一意义。在该注释中,表明了在任意交换性的Noether环上,通过其零子模块的一次分解,甚至可以很容易地计算出有限生成模块的纯度过滤。通过归纳计算等维零件来降低复杂性。在关于构造交换代数的大多数书籍中,对于循环模块,都隐含了这种一次分解,等维部分和纯度过滤之间的联系。对于算子的许多可交换环,标准信号模块是内射热发生器。在这种情况下,模块的纯度过滤会引起对偶行为的相应过滤,并且初级分解会引起该过滤的纯尺寸因子的其他总和表示。对于算子的非交换环,标准信号模块通常既不是内射发生器也不是余热发生器,对于此类信号模块,纯度过滤对确定行为及其结构特性的有用性并不明显。通过反例还表明,模块的尺寸纯度或行为并不意味着初始条件的尺寸纯度,这是根据相关均质柯西问题的Riquier提出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号