首页> 外文期刊>Multi-Scale Computing Systems, IEEE Transactions on >A Lockdown Technique to Prevent Machine Learning on PUFs for Lightweight Authentication
【24h】

A Lockdown Technique to Prevent Machine Learning on PUFs for Lightweight Authentication

机译:一种锁定技术,可防止在PUF上进行机器学习以进行轻量级身份验证

获取原文
获取原文并翻译 | 示例

摘要

We present a lightweight PUF-based authentication approach that is practical in settings where a server authenticates a device, and for use cases where the number of authentications is limited over a device's lifetime. Our scheme uses a server-managed challenge/response pair (CRP) lockdown protocol: unlike prior approaches, an adaptive chosen-challenge adversary with machine learning capabilities cannot obtain new CRPs without the server's implicit permission. The adversary is faced with the problem of deriving a PUF model with a limited amount of machine learning training data. Our system-level approach allows a so-called strong PUF to be used for lightweight authentication in a manner that is heuristically secure against today's best machine learning methods through a worst-case CRP exposure algorithmic validation. We also present a degenerate instantiation using a weak PUF that is secure against computationally unrestricted adversaries, which includes any learning adversary, for practical device lifetimes and read-out rates. We validate our approach using silicon PUF data, and demonstrate the feasibility of supporting 10, 1,000, and 1M authentications, including practical configurations that are not learnable with polynomial resources, e.g., the number of CRPs and the attack runtime, using recent results based on the probably-approximately-correct (PAC) complexity-theoretic framework.
机译:我们提供了一种基于PUF的轻量级身份验证方法,该方法在服务器对设备进行身份验证的设置以及在设备的整个生命周期中限制身份验证次数的用例中都非常实用。我们的方案使用服务器管理的质询/响应对(CRP)锁定协议:与以前的方法不同,具有机器学习功能的自适应选择质询对手无需服务器的隐式许可就无法获取新的CRP。对手面临着用有限数量的机器学习训练数据推导PUF模型的问题。我们的系统级方法允许通过最坏的CRP暴露算法验证,以启发式方式抵御当今最好的机器学习方法,从而将所谓的强大PUF用于轻量级身份验证。我们还提出了使用弱PUF的简并实例化,对于实际的设备寿命和读出率,该PUF可以抵抗不受计算限制的对手(包括任何学习对手),这些对手不受任何限制。我们使用硅PUF数据验证了我们的方法,并使用基于以下内容的最新结果证明了支持10、1,000和1M身份验证的可行性,包括多项式资源无法学习的实际配置,例如CRP数量和攻击运行时间。大概正确的(PAC)复杂性理论框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号