首页> 外文期刊>Monte Carlo Methods and Applications >A Bayesian approach for multi-stage models with linear time-dependent hazard rate
【24h】

A Bayesian approach for multi-stage models with linear time-dependent hazard rate

机译:具有线性时间依赖危险率的多级模型的贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-stage models have been used to describe progression of individuals which develop through a sequence of discrete stages. We focus on the multi-stage model in which the number of individuals in each stage is assessed through destructive samples for a sequence of sampling time. Moreover, the stage duration distributions of the model are effected by a time-dependent hazard rate. The multi-stage models become complex with a stage having time-dependent hazard rate. The main aim of this paper is to derive analytically the approximation of the likelihood of the model. We apply the approximation to the Metropolis–Hastings (MH) algorithm to estimate parameters for the model. The method is demonstrated by applying to simulated data which combine non-hazard rate, stage-wise constant hazard rate and time-dependent hazard rates in stage duration distributions.
机译:多级模型已被用于描述通过一系列离散阶段开发的个体的进展。我们专注于多阶段模型,其中通过破坏性样本来评估每个阶段的个体数量,以进行一系列采样时间。此外,模型的阶段持续时间分布通过时间依赖的危险率来实现。多级模型与具有时间依赖危险率的阶段变得复杂。本文的主要目的是在分析上得出模型可能性的近似值。我们将近似值应用于Metropolis-Hastings(MH)算法以估计模型的参数。通过应用于阶段持续时间分布中的非危险率,阶段明智的持续危险率和时间依赖危险率的模拟数据来证明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号