...
首页> 外文期刊>Molecular imaging >Improved In Vivo Whole-Animal Detection Limits of Green Fluorescent Protein-Expressing Tumor Lines by Spectral Fluorescence Imaging
【24h】

Improved In Vivo Whole-Animal Detection Limits of Green Fluorescent Protein-Expressing Tumor Lines by Spectral Fluorescence Imaging

机译:改进的绿色荧光蛋白表达肿瘤谱线荧光成像体内全动物检测限。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Green fluorescent protein (GFP) has been used for cell tracking and imaging gene expression in superficial or surgically exposed structures. However, in vivo murine imaging is often limited by several factors, including scatter and attenuation with depth and overlapping autofluorescence. The autofluorescence signals have spectral profiles that are markedly different from the GFP emission spectral profile. The use of spectral imaging allows separation and quantitation of these contributions to the total fluorescence signal seen in vivo by weighting known pure component profiles. Separation of relative GFP and autofluorescence signals is not readily possible using epifluorescent continuous-wave single excitation and emission bandpass imaging (EFI). To evaluate detection thresholds using these two methods, nude mice were subcutaneously injected with a series of GFP-expressing cells. For EFI, optimized excitation and emission bandpass filters were used. Owing to the ability to separate autofluorescence contributions from the emission signal using spectral imaging compared with the mixed contributions of GFP and autofluorescence in the emission signal recorded by the EFI system, we achieved a 300-fold improvement in the cellular detection limit. The detection limit was 3 × 10~3 cells for spectral imaging versus 1 × 10~6 cells for EFI. Despite contributions to image stacks from autofluorescence, a 100-fold dynamic range of cell number in the same image was readily visualized. Finally, spectral imaging was able to separate signal interference of red fluorescent protein from GFP images and vice versa. These findings demonstrate the utility of the approach in detecting low levels of multiple fluorescent markers for whole-animal in vivo applications.
机译:绿色荧光蛋白(GFP)已用于在表面或手术暴露结构中进行细胞跟踪和基因表达成像。然而,体内鼠的成像通常受到几个因素的限制,包括散射和深度衰减以及重叠的自发荧光。自发荧光信号具有明显不同于GFP发射光谱图的光谱图。光谱成像的使用允许通过加权已知的纯组分概况来分离和定量这些对体内可见的总荧光信号的贡献。使用落射荧光连续波单激发和发射带通成像(EFI)很难分离相对的GFP和自发荧光信号。为了使用这两种方法评估检测阈值,向裸鼠皮下注射了一系列表达GFP的细胞。对于EFI,使用了优化的激发和发射带通滤波器。与使用EFI系统记录的发射信号中的GFP和自发荧光的混合贡献相比,由于使用光谱成像能够将自发荧光的贡献与发射信号分开,因此我们将细胞检测限提高了300倍。光谱成像的检出限为3×10〜3个细胞,而EFI为1×10〜6个细胞。尽管自发荧光有助于图像堆叠,但是同一图像中细胞数量的100倍动态范围仍然很容易观察到。最后,光谱成像能够从GFP图像中分离出红色荧光蛋白的信号干扰,反之亦然。这些发现证明了该方法在检测低水平的多种荧光标记物用于全动物体内应用中的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号