首页> 外文期刊>Modelling and simulation in engineering >Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization
【24h】

Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization

机译:非传统优化技术在机翼形状优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer.
机译:优化算法的方法是最重要的参数之一,它将在空气动力学形状优化问题中强烈影响解决方案的保真度。如今,各种各样的优化方法,例如遗传算法(GA),模拟退火(SA)和粒子群优化(PSO),被广泛用于解决空气动力学形状优化问题。除了优化方法之外,几何参数化也成为在空气动力学形状优化过程中要考虑的重要因素。这项工作的目的是介绍通过使用十二个参数描述一般机翼几何形状的知识,方法是将其形状表示为多项式函数,并将此方法与流解和优化算法结合起来。针对NACA 0012机翼制定了空气动力学形状优化问题,并使用模拟退火和遗传算法针对5.0度迎角进行了求解。结果表明,模拟退火优化方案在各种可能的解决方案中寻找最优解更为有效。还发现,与GA相比,SA显示出更多的开采特征,而GA被认为是更有效的资源管理器。

著录项

  • 来源
    《Modelling and simulation in engineering》 |2012年第2期|636135.1-636135.6|共6页
  • 作者单位

    Department of Mechanical Engineering, Anna University, Tamil Nadu, Dindigul 624622, India;

    Department of Mechanical Engineering, Anna University, Tamil Nadu, Dindigul 624622, India;

    Department of Information Technology, IBBT, Ghent University, 9050 Ghent, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号