首页> 外文期刊>Modelling and simulation in engineering >Automated Search-Based Robustness Testing for Autonomous Vehicle Software
【24h】

Automated Search-Based Robustness Testing for Autonomous Vehicle Software

机译:基于搜索的自动驾驶汽车软件鲁棒性测试

获取原文
获取原文并翻译 | 示例

摘要

Autonomous systems must successfully operate in complex time-varying spatial environments even when dealing with system faults that may occur during a mission. Consequently, evaluating the robustness, or ability to operate correctly under unexpected conditions, of autonomous vehicle control software is an increasingly important issue in software testing. New methods to automatically generate test cases for robustness testing of autonomous vehicle control software in closed-loop simulation are needed. Search-based testing techniques were used to automatically generate test cases, consisting of initial conditions and fault sequences, intended to challenge the control software more than test cases generated using current methods. Two different search-based testing methods, genetic algorithms and surrogate-based optimization, were used to generate test cases for a simulated unmanned aerial vehicle attempting to fly through an entryway. The effectiveness of the search-based methods in generating challenging test cases was compared to both a truth reference (full combinatorial testing) and the method most commonly used today (Monte Carlo testing). The search-based testing techniques demonstrated better performance than Monte Carlo testing for both of the test case generation performance metrics: (1) finding the single most challenging test case and (2) finding the set of fifty test cases with the highest mean degree of challenge.
机译:自治系统必须在复杂的时变空间环境中成功运行,即使处理任务期间可能发生的系统故障也是如此。因此,在软件测试中,评估自动驾驶控制软件的耐用性或在意外条件下正确运行的能力已成为越来越重要的问题。需要一种新方法来自动生成测试用例,以进行闭环仿真中的自动驾驶汽车控制软件的鲁棒性测试。基于搜索的测试技术用于自动生成包括初始条件和故障序列的测试用例,旨在比使用当前方法生成的测试用例更能挑战控制软件。两种不同的基于搜索的测试方法,即遗传算法和基于替代的优化方法,被用于生成试图通过入口通道飞行的模拟无人机的测试案例。将基于搜索的方法在生成具有挑战性的测试用例中的有效性与真值参考(全面组合测试)和当今最常用的方法(蒙特卡洛测试)进行了比较。基于搜索的测试技术在两个测试用例生成性能指标上均表现出比Monte Carlo测试更好的性能:(1)找到一个最具挑战性的测试用例,(2)找到具有最高平均程度的五十个测试用例集挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号