首页> 外文期刊>Mobile networks & applications >Predicting Systolic Blood Pressure in Real-Time Using Streaming Data and Deep Learning
【24h】

Predicting Systolic Blood Pressure in Real-Time Using Streaming Data and Deep Learning

机译:使用流数据和深度学习,实时预测收缩压

获取原文
获取原文并翻译 | 示例

摘要

High systolic blood pressure causes many problems, including stroke, brain attack, and others. Therefore, examining blood pressure and discovering issues related to it at the right time can help prevent the occurrence of health problems. Nowadays, health-based data brings a new dimension to healthcare by exploiting the real-time patients' data to early detect systolic blood pressure (SBP). Furthermore, technologies typically associated with smart and real-time data processing add value in the healthcaredomain, including artificial intelligence, data analytic technologies, and stream processing technologies. Thus, this paper introduces a systolic blood pressure prediction system that can predict SBP in real-time and, therefore, can avoid health problems that may stem from sudden high blood pressure. The proposed system works through two components, namely, developing an offline model and an online prediction pipeline. The aim of developing an offline model module is to develop the model using investigate different deep learning models to achieve the smallest root mean square error. It has been developed using Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional Short-Term Memory (BI-LSTM), Gated Recurrent Units (GRU) models andMedical Information Mart for Intensive Care (MIMC II) SBP time-series dataset. The online prediction pipeline module is using Apache Kafka and Apache Spark to predict the near future of SBP in real-time using the best deep learning model and SBP streaming time-series data. The experimental results indicate that the BI-LSTM model has achieved the best performance using three hidden layers, and it is used to predict the near future of SBP in real-time.
机译:高收缩压导致许多问题,包括中风,脑攻击等。因此,检查血压并在合适的时间发现与其相关的问题可以有助于防止发生健康问题。如今,通过利用实时患者的数据来早期检测收缩压(SBP),基于卫生数据给医疗保健带来了新的维度。此外,通常与智能和实时数据处理相关联的技术在医疗娱乐中增加值,包括人工智能,数据分析技术和流处理技术。因此,本文介绍了一种收缩压预测系统,可以实时预测SBP,因此可以避免可能源于突然高血压的健康问题。所提出的系统通过两个组件,即开发离线模型和在线预测管道。开发离线模型模块的目的是使用调查不同的深度学习模型来开发模型,以实现最小的根均方误差。它已经使用经常性神经网络(RNN),长短短期记忆(LSTM),双向短期记忆(BI-LSTM),门控复发单位(GRU)模型和医疗信息MART进行密集护理(MIMC II)SBP时间序列数据集。在线预测管道模块使用Apache Kafka和Apache Spark,以使用最佳的深度学习模型和SBP流时间序列数据实时预测SBP的不久的未来。实验结果表明,Bi-LSTM模型使用三个隐藏层实现了最佳性能,它用于实时预测SBP的不久的未来。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号