首页> 外文期刊>Mobile networks & applications >Improving Tightly LiDAR/Compass/Encoder-lntegrated Mobile Robot Localization with Uncertain Sampling Period Utilizing EFIR Filter
【24h】

Improving Tightly LiDAR/Compass/Encoder-lntegrated Mobile Robot Localization with Uncertain Sampling Period Utilizing EFIR Filter

机译:利用EFIR滤波器改善了利用不确定采样周期的紧密激光雷达/罗盘/编码器-Lnpeation移动机器人定位

获取原文
获取原文并翻译 | 示例

摘要

In order to overcome the uncertainty of the data sampling period of the sensor due to equipment reasons, a mobile robot localization system is developed under the uncertain sampling period for the tightly-fused light detection and ranging (LiDAR), compass, and encoder data. The errors of position and velocity, the robot's yaw, and the sampling period are chosen as state variables. The ranges between the corner feature points (CFPs) and the mobile robot measured by the LiDAR, compass, and encoder are considered as an observation. Based on the tightly-integrated nonlinear model, the extended unbiased finite-impulse response (EFIR) filter fuses the sensors' data for the integrated localization system. The performances of the traditional loosely-coupled integration scheme, tightly-coupled integration scheme with a constant sampling interval, and tightly-coupled integration with an uncertain sampling interval are compared based on real data. It is shown experimentally that the proposed scheme is more accurate then the traditional loosely-coupled integration and the one relying on a constant sampling interval, which improves by about 10.2%.
机译:为了克服传感器的数据采样周期的不确定性,由于设备原因,移动机器人定位系统是在不确定的采样周期下开发的,用于紧密融合光检测和测距(LIDAR),罗盘和编码器数据。位置和速度,机器人的偏移和采样周期的误差被选为状态变量。角落特征点(CFP)之间的范围和由LIDAR,COMPARD和编码器测量的移动机器人被认为是观察。基于紧密集成的非线性模型,扩展的非偏见有限脉冲响应(EFIR)滤波器熔断了集成定位系统的传感器数据。基于实际数据,比较了传统的松散耦合的集成方案,具有恒定采样间隔的紧密耦合积分方案,以及与不确定的采样间隔的紧密耦合集成。实验示出了所提出的方案更准确,然后是传统的松散耦合的集成和依赖于恒定采样间隔的一个,这提高了约10.2%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号