首页> 外文期刊>Mobile networks & applications >Intelligent Handover Triggering Mechanism in 5G Ultra-Dense Networks Via Clustering-Based Reinforcement Learning
【24h】

Intelligent Handover Triggering Mechanism in 5G Ultra-Dense Networks Via Clustering-Based Reinforcement Learning

机译:基于集群的强化学习5G超密集网络中的智能切换触发机制

获取原文
获取原文并翻译 | 示例

摘要

Ultra-dense networks (UDNs) are considered as key 5G technologies. They provide mobile users a high transmission rate and efficient radio resource management. However, UDNs lead to the dense deployment of small base stations (BSs) that can cause stronger interference and subsequently increase the handover management complexity. At present, the conventional handover triggering mechanism of user equipment (UE) is only designed for macro mobility and thus could result in negative effects such as frequent handovers, ping-pong handovers, and handover failures on the handover process of UE at UDNs. These effects degrade the overall network performance. In addition, a massive number of BSs significantly increase the network maintenance system workload. To address these issues, this paper proposes an intelligent handover triggering mechanism for UE based on Q-learning frameworks and subtractive clustering techniques. The input metrics are first converted to state vectors by subtractive clustering, which can improve the efficiency and effectiveness of the training process. Afterward, the Q-learning framework learns the optimal handover triggering policy from the environment. The trained Q table is deployed to UE to trigger the handover process. The simulation results demonstrate that the proposed method can ensure the stronger mobility robustness of UE that is improved by 60%-90% compared to the conventional approach with respect to the number of handovers, ping-ping handover rate, and handover failure rate while maintaining other key performance indicators (KPIs), that is, a relatively high level of throughput and network latency. In addition, through integration with subtractive clustering, the proposed mechanism is further improved by an average of 20% in terms of all the evaluated KPIs.
机译:超密集的网络(UDN)被认为是键5G技术。它们为移动用户提供高传输率和高效的无线电资源管理。然而,UDN导致小型基站(BSS)的密集部署,这可能导致更强的干扰,随后提高切换管理复杂性。目前,用户设备(UE)的传统切换触发机制仅设计用于宏移动性,因此可能导致诸如UE的切换过程中的频繁切换,ping-pong切换和切换故障等负效应。这些效果降低了整体网络性能。此外,大量的BSS显着增加了网络维护系统工作量。为了解决这些问题,本文提出了一种基于Q学习框架和减法聚类技术的UE的智能切换触发机制。首先通过减去聚类将输入度量转换为状态向量,这可以提高培训过程的效率和有效性。之后,Q学习框架了解从环境中的最佳切换触发策略。训练的Q表部署到UE以触发切换过程。模拟结果表明,与传统方法相对于相对于切换,Ping Ping切换率和切换失败率的传统方法相比,所提出的方法可以确保UE的更强的迁移率鲁棒性提高了60%-90%。其他关键绩效指标(KPI),即吞吐量和网络延迟的较高水平。另外,通过与减法聚类的整合,所提出的机制在所有评估的KPI方面进一步提高了20%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号