首页> 外文期刊>Mobile networks & applications >A Pricing Approach Toward Incentive Mechanisms for Participant Mobile Crowdsensing in Edge Computing
【24h】

A Pricing Approach Toward Incentive Mechanisms for Participant Mobile Crowdsensing in Edge Computing

机译:优势移动人群参与者移动众粘性机制的定价方法

获取原文
获取原文并翻译 | 示例

摘要

Owing to the acceleration of urbanization and the rapid development of mobile Internet, mobile crowd sensing (MCS) has been recognized as a promising method to acquire massive volume of data. However, due to the massive perception data in participatory MCS system, the data privacy of mobile users and the response speed of data processing in cloud platform are hard to guarantee. Stimulating the enthusiasm of participants could be challenging at the same time. In this paper, we first propose a three-layer MCS architecture which introduces edge servers to process raw data, protects users' privacy and improve response time. In order to maximize social welfare, we consider two-stage game in three-layer MCS architecture. Then, we formulate a Markov decision process (MDP)-based social welfare maximization model and investigate a convex optimization pricing problem in the proposed three-layer architecture. Combined with the market economy model, the problem could be considered as a Walrasian equilibrium problem according to market exchange theory. We propose a pricing approach toward incentive mechanisms based on Lagrange multiplier method, dual decomposition and subgradient iterative method. Finally, we derive the experimental data from real-world dataset and extensive simulations demonstrate the performance of our proposed method.
机译:由于城市化加速和移动互联网的快速发展,移动人群传感(MCS)被认为是获取大规模数据量的有希望的方法。但是,由于参与式MCS系统中的大规模感知数据,移动用户的数据隐私和云平台中数据处理的响应速度很难保证。刺激参与者的热情同时可能具有挑战性。在本文中,我们首先提出了一种三层MCS架构,它引入了边缘服务器来处理原始数据,保护用户的隐私并改善响应时间。为了最大化社会福利,我们考虑三层MCS架构中的两级游戏。然后,我们制定了基于马尔可夫决策过程(MDP)的社会福利最大化模型,并调查所提出的三层架构中的凸优化定价问题。结合市场经济模式,根据市场交流理论,问题可以被视为瓦尔罗斯均衡问题。基于拉格朗日倍增器方法,双分解和次微生物迭代方法,提出了一种对激励机制的定价方法。最后,我们从现实世界数据集中获得了实验数据,并且广泛的模拟证明了我们所提出的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号