首页> 外文期刊>Mobile networks & applications >Threshold Based Multi-Objective Memetic Optimized Round Robin Scheduling for Resource Efficient Load Balancing in Cloud
【24h】

Threshold Based Multi-Objective Memetic Optimized Round Robin Scheduling for Resource Efficient Load Balancing in Cloud

机译:基于阈值的多目标麦克风优化循环调度,用于云中资源有效负载平衡

获取原文
获取原文并翻译 | 示例

摘要

Task scheduling is a significant problem to be resolved for balancing the workload on a cloud server. One of the key problems that affect the scheduling performance is burstiness workloads. Few research studies have been introduced to schedule tasks and balancing loads in the cloud. However, scheduling performance of existing technique was not effective in burstiness workload's conditions. Thus, there is a need for a novel task scheduling technique to handle bursty user demands and provide high-quality cloud services. Therefore, Threshold Based Multi-Objective Memetic Optimized Round Robin Scheduling (T-MMORRS) Technique is proposed in this research work. At first, user requests are sent to the cloud server. After that, T-MMORRS Technique employs burst detector to determine the workload condition as normal or that which is bursty. Based on burst detector result, then T-MMORRS Technique adapts the two different load balancing algorithms for efficiently scheduling the user tasks. The T-MMORRS Technique chooses Threshold Multi-Objective Memetic Optimization (TMMO) in normal workload situation and Weighted Multi-Objective Memetic Optimized Round Robin Scheduling (WMMORRS) in burstiness workload state. Finally, the selected load balancing algorithm in MMORRS Technique schedules the user request task to a resource-efficient virtual machine with higher efficiency and lower time consumption. As a result, T-MMORRS Technique enhances the task scheduling performance to balance the both bursty and non-bursty workloads of virtual machines in the cloud. The experimental evaluation of T-MMORRS Technique is conducted using factors such as scheduling efficiency, scheduling time and energy consumption with respect to the number of user requests. The experimental result shows that the T-MMORRS Technique can enhance the scheduling efficiency and also minimizes the energy usage in the cloud as compared to state-of-the-art works.
机译:任务调度是一个重要的问题,用于平衡云服务器上的工作负载。影响调度性能的关键问题之一是突发工作负载。已经引入了一些研究研究来安排云中的任务和平衡负荷。然而,现有技术的调度性能在突发工作量的条件下无效。因此,需要一种新的任务调度技术来处理突发的用户需求并提供高质量的云服务。因此,在本研究工作中提出了基于阈值的基于多目标麦片优化的循环调度(T-MMORRS)技术。首先,用户请求将发送到云服务器。之后,T-MMORRS技术采用突发检测器,以确定正常工作负载条件或突发的工作负载条件。基于突发检测器结果,T-MMORRS技术适应两个不同的负载平衡算法,以有效地调度用户任务。 T-MMORRS技术在突发工作负载状态下选择正常工作量情况和加权多目标麦片优化循环调度(WMMORRS)的阈值多目标膜优化(TMMO)。最后,MMORRS技术中所选的负载平衡算法将用户请求任务安排到具有更高效率和更低时间消耗的资源有效的虚拟机。因此,T-MMORRS技术可以增强任务调度性能,以平衡云中虚拟机的突发和非爆发工作负载。使用诸如调度效率,调度时间和能量消耗的因素来进行T-MMORRS技术的实验评估,相对于用户请求的数量。实验结果表明,与最先进的工作相比,T-MMORRS技术可以提高调度效率,并最大限度地减少云中的能量使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号