首页> 外文期刊>Mobile networks & applications >A New Deep Learning-Based Handwritten Character Recognition System on Mobile Computing Devices
【24h】

A New Deep Learning-Based Handwritten Character Recognition System on Mobile Computing Devices

机译:基于深度学习的新型移动计算设备手写字符识别系统

获取原文
获取原文并翻译 | 示例

摘要

Deep learning (DL) is a hot topic in current pattern recognition and machine learning. DL has unprecedented potential to solve many complex machine learning problems and is clearly attractive in the framework of mobile devices. The availability of powerful pattern recognition tools creates tremendous opportunities for next-generation smart applications. A convolutional neural network (CNN) enables data-driven learning and extraction of highly representative, hierarchical image features from appropriate training data. However, for some data sets, the CNN classification method needs adjustments in its structure and parameters. Mobile computing has certain requirements for running time and network weight of the neural network. In this paper, we first design an image processing module for a mobile device based on the characteristics of a CNN. Then, we describe how to use the mobile to collect data, process the data, and construct the data set. Finally, considering the computing environment and data characteristics of mobile devices, we propose a lightweight network structure for optical character recognition (OCR) on specific data sets. The proposed method using a CNN has been validated by comparison with the results of existing methods, used for optical character recognition.
机译:深度学习(DL)是当前模式识别和机器学习中的热门话题。 DL在解决许多复杂的机器学习问题方面具有空前的潜力,并且在移动设备的框架中显然具有吸引力。功能强大的模式识别工具的可用性为下一代智能应用程序创造了巨大的机会。卷积神经网络(CNN)能够进行数据驱动的学习,并从适当的训练数据中提取具有高度代表性的分层图像特征。但是,对于某些数据集,CNN分类方法需要调整其结构和参数。移动计算对神经网络的运行时间和网络权重有一定要求。在本文中,我们首先根据CNN的特征设计用于移动设备的图像处理模块。然后,我们描述如何使用移动设备收集数据,处理数据以及构建数据集。最后,考虑到移动设备的计算环境和数据特征,我们提出了一种轻量级的网络结构,用于特定数据集上的光学字符识别(OCR)。通过与用于光学字符识别的现有方法的结果进行比较,已验证了使用CNN的拟议方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号