首页> 外文期刊>Mobile networks & applications >Efficient Machine Learning Model for Movie Recommender Systems Using Multi-Cloud Environment
【24h】

Efficient Machine Learning Model for Movie Recommender Systems Using Multi-Cloud Environment

机译:使用多云环境的电影推荐系统的高效机器学习模型

获取原文
获取原文并翻译 | 示例

摘要

A recommender system or a recommendation system is a subclass of information filtering system which in turn predicts the "preference" or "ratings" which a user would provide to the specified item. Recommender systems are utilized in a variety of areas comprising news, music, movies, books, search queries, social tags, research articles, and products in general. The primary aim of the recommender system is to allow the computers learn automatically without any human intervention or assistance and regulate activities consequently. The existing methods had a lower amount of search result quality and a minimum rate of ranking accuracy. To overcome this issue and to enhance the ranking quality and search result quality a novel recommender system in the multi-cloud with the use of proposed machine learning algorithm. In this proposed work (NPCA-HAC), the social data set are pre-processed to remove the noise and making them pure. Then, the method of feature selection is carried out with the use of principle component analysis method (PCA). The selected features are then clustered with the use of k-means followed by the Hierarchical Agglomerative Clustering algorithm (HAC). These clusters are then ranked by the use of trust ranking algorithm. Finally, the ranked output was evaluated and the performance measure was analyzed which provides the efficient results from the recommender system.
机译:推荐系统或推荐系统是信息过滤系统的子类,该信息过滤系统又预测用户将提供给指定项目的“偏好”或“等级”。推荐系统广泛用于新闻,音乐,电影,书籍,搜索查询,社交标签,研究文章和产品等各个领域。推荐系统的主要目的是允许计算机在没有任何人工干预或协助的情况下自动学习,从而规范活动。现有方法的搜索结果质量较低,排名准确性最低。为了克服这个问题并提高排名质量和搜索结果质量,使用提出的机器学习算法在多云环境中建立了一种新颖的推荐系统。在这项拟议的工作(NPCA-HAC)中,对社交数据集进行了预处理,以消除噪音并使其纯净。然后,使用主成分分析法(PCA)进行特征选择。然后,使用k均值对选定的要素进行聚类,然后再使用层次聚类聚类算法(HAC)。然后,使用信任评级算法对这些集群进行评级。最后,对排名的输出进行评估,并对性能指标进行分析,从而从推荐系统中获得有效的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号