首页> 外文期刊>Mobile networks & applications >A Robust Parallel Object Tracking Method for Illumination Variations
【24h】

A Robust Parallel Object Tracking Method for Illumination Variations

机译:一种鲁棒的光照变化并行目标跟踪方法

获取原文
获取原文并翻译 | 示例

摘要

Illumination variation often occurs in visual tracking, which has a severe impact on the system performance. Many trackers based on Discriminative correlation filter (DCF) have recently obtained promising performance, showing robustness to illumination variation. However, when the target objects undergo significant appearance variation due to intense illumination variation, the features extracted from the object will not have the ability to be discriminated from the background, which causes the tracking algorithm to lose the target in the scene. In this paper, in order to improve the accuracy and robustness of the Discriminative correlation filter (DCF) trackers under intense illumination variation, we propose a very effective strategy by performing multiple region detection and using alternate templates (MRAT). Based on parallel computation, we are able to perform simultaneous detection of multiple regions, equivalently enlarging the search region. Meanwhile the alternate template is saved by a template update mechanism in order to improve the accuracy of the tracker under strong illumination variation. Experimental results on large-scale public benchmark datasets show the effectiveness of the proposed method compared to state-of-the-art methods.
机译:照明变化通常发生在视觉跟踪中,这严重影响了系统性能。许多基于判别相关滤波器(DCF)的跟踪器最近获得了令人鼓舞的性能,显示出对光照变化的鲁棒性。但是,当目标对象由于强烈的光照变化而出现明显的外观变化时,从该对象提取的特征将无法与背景区分开,这导致跟踪算法在场景中丢失了目标。在本文中,为了提高在强光照变化下的判别相关滤波器(DCF)跟踪器的准确性和鲁棒性,我们提出了一种非常有效的策略,即执行多区域检测并使用备用模板(MRAT)。基于并行计算,我们能够同时检测多个区域,从而等效地扩大了搜索区域。同时,通过模板更新机制保存备用模板,以提高跟踪器在强烈光照变化下的精度。在大型公共基准数据集上的实验结果表明,与最新方法相比,该方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号