首页> 外文期刊>Mobile networks & applications >Characterizing the Capability of Vehicular Fog Computing in Large-scale Urban Environment
【24h】

Characterizing the Capability of Vehicular Fog Computing in Large-scale Urban Environment

机译:表征大型城市环境中的车辆雾计算能力

获取原文
获取原文并翻译 | 示例

摘要

The worldwide increase of vehicles is demanding the deployment of an intelligent transportation system for the urban environment. Recently, cloud computing technology is utilized to make the vehicles on the roads smarter and offer better driving experience. However, the intrinsic client-server communication model in the cloud-assisted service cannot meet the increasing demands for intensive computing in vehicles. To solve this challenging issue, we investigate another form of computing service, vehicular fog computing (VFC), which is a group of nearby smart vehicles connected via peer-to-peer communication model. Though VFC can provide computing service to any task initiator, its computational capability, i.e., the ability to provide computing service to the initiator, might be severely constrained by the realistic environments including limited communication ranges, high speeds and unpredictable mobility patterns of vehicles. In this paper, we characterize the computational capability (indicated by the product of processor speed and the time length from receiving the task) of VFC in a practical scenario through studying real-world vehicular mobility traces of Beijing. Specially, we propose a time-varying graph model to access the capability of VFC in such a large-scale urban environment with different scenarios. Based on this model, we reveal the temporal and spatial characteristics of the computational capability with different number of task initiators and portray its distribution of the number of connected vehicles and the computational capability. The distribution of the computational capability is also portrayed. Based on these observations, we define two modes to depict two different models of task distribution. Furthermore, we reveal the relationship between the computational capability and system parameters of computation delay, communication radius, and the number of initiators.
机译:世界范围内车辆的增长要求为城市环境部署智能交通系统。最近,利用云计算技术使道路上的车辆更智能,并提供更好的驾驶体验。但是,云辅助服务中的固有客户端-服务器通信模型无法满足对车辆密集计算的不断增长的需求。为了解决这个具有挑战性的问题,我们研究了另一种计算服务形式,即车辆雾计算(VFC),它是通过对等通信模型连接的一组附近的智能汽车。尽管VFC可以为任何任务发起者提供计算服务,但其计算能力(即为发起者提供计算服务的能力)可能会受到现实环境的严重限制,这些现实环境包括有限的通信范围,高速和车辆不可预测的移动性模式。在本文中,我们通过研究北京的真实车辆行驶轨迹,来描述在实际情况下VFC的计算能力(由处理器速度和接收任务的时间长度的乘积表示)。特别地,我们提出了一个时变图模型,以在如此大的城市环境中使用不同的场景来访问VFC的功能。在此模型的基础上,我们揭示了任务发起者数量不同时计算能力的时空特征,描绘了其在连接车辆数量和计算能力方面的分布。还描述了计算能力的分布。基于这些观察,我们定义了两种模式来描述任务分配的两种不同模型。此外,我们揭示了计算能力和系统参数之间的关系,这些参数包括计算延迟,通信半径和发起方数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号