首页> 外文期刊>IEEE transactions on mobile computing >Secure Information Fusion using Local Posterior for Distributed Cyber-Physical Systems
【24h】

Secure Information Fusion using Local Posterior for Distributed Cyber-Physical Systems

机译:使用本地后验融合用于分布式网络物理系统的安全信息融合

获取原文
获取原文并翻译 | 示例

摘要

In modern distributed cyber-physical systems (CPS), information fusion often plays a key role in automate and self-adaptive decision making process. However, given the heterogeneous and distributed nature of modern CPSs, it is a great challenge to operate CPSs with the compromised data integrity and unreliable communication links. In this paper, we study the distributed state estimation problem under the false data injection attack (FDIA) with probabilistic communication networks. We propose an integrated "detection + fusion" solution, which is based on the Kullback-Leibler divergences (KLD) between local posteriors and therefore does not require the exchange of raw sensor data. For the FDIA detection step, the KLDs are used to cluster nodes in the probability space and to partition the space into secure and insecure subspaces. By approximating the distribution of the KLDs with a general chi(2) distribution and calculating its tail probability, we provide an analysis of the detection error rate. For the information fusion step, we discuss the potential risk of double counting the shared prior information in the KLD-based consensus formulation method. We show that if the local posteriors are updated from the shared prior, the increased number of neighbouring nodes will lead to the diminished information gain. To overcome this problem, we propose a near-optimal distributed information fusion solution with properly weighted prior and data likelihood. Finally, we present simulation results for the integrated solution. We discuss the impact of network connectivity on the empirical detection error rate and the accuracy of state estimation.
机译:在现代分布式网络物理系统(CPS)中,信息融合通常在自动化和自适应决策过程中起着关键作用。然而,鉴于现代CPS的异构和分布式性质,通过受损的数据完整性和不可靠的通信链路操作CPS是一个巨大的挑战。在本文中,我们利用概率通信网络研究了假数据注入攻击(FDIA)下的分布式状态估计问题。我们提出了一个集成的“检测+融合”解决方案,该解决方案基于当地后声路之间的Kullback-Leibler分歧(KLD),因此不需要交换原始传感器数据。对于FDIA检测步骤,KLD用于群概率空间中的节点,并将空间分区为安全和不安全的子空间。通过用一般的CHI(2)分布和计算其尾随概率来近似KLD的分布,我们提供了检测误差率的分析。对于信息融合步骤,我们讨论了基于KLD的共识的共识方法中分享共享事先信息的潜在风险。我们表明,如果从共享先前更新本地后声路,则相邻节点的数量增加将导致信息增益减弱。为了克服这个问题,我们提出了一种近乎最佳的分布式信息融合解决方案,具有正确加权和数据可能性。最后,我们为集成解决方案提出了仿真结果。我们讨论网络连接对经验检测误差率的影响及状态估计的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号