首页> 外文期刊>IEEE transactions on mobile computing >Video Stabilization for Camera Shoot in Mobile Devices via Inertial-Visual State Tracking
【24h】

Video Stabilization for Camera Shoot in Mobile Devices via Inertial-Visual State Tracking

机译:通过惯性视觉状态跟踪进行摄像机拍摄的视频稳定

获取原文
获取原文并翻译 | 示例

摘要

Due to the sudden movement during the camera shoot, the videos retrieved from the hand-held mobile devices often suffer from undesired frame jitters, leading to the loss of video quality. In this paper, we present a video stabilization solution in mobile devices via inertial-visual state tracking. Specifically, during the video shoot, we use the gyroscope to estimate the rotation of camera, and use the structure-from-motion among the image frames to estimate the translation of camera. We build a camera projection model by considering the rotation and translation of the camera, and the camera motion model to depict the relationship between the inertial-visual state and the camera's 3D motion. By fusing the inertial measurement (IMU)-based method and the computer vision (CV)-based method, our solution is robust to the fast movement and violent jitters, moreover, it greatly reduces the computation overhead in video stabilization. In comparison to the IMU-based solution, our solution can estimate the translation in a more accurate manner, since we use the feature point pairs in adjacent image frames, rather than the error-prone accelerometers, to estimate the translation. In comparison to the CV-based solution, our solution can estimate the translation with less number of feature point pairs, since the number of undetermined degrees of freedom in the 3D motion directly reduces from 6 to 3. We implemented a prototype system on smart glasses and smart phones, and evaluated the performance under real scenarios, i.e., the human subjects used mobile devices to shoot videos while they were walking, climbing or riding. The experiment results show that our solution achieves 32 percent better performance than the state-of-art solutions in regard to video stabilization. Moreover, the average processing time latency is 32.6ms, which is lower than the conventional inter-frame time interval, i.e., 33ms, and thus meets the real-time requirement for online processing.
机译:由于相机拍摄期间的突然移动,从手持式移动设备检索的视频经常遭受不希望的帧抖动,导致视频质量的损失。在本文中,我们通过惯性视觉状态跟踪在移动设备中提出了一种视频稳定解决方案。具体而言,在视频拍摄期间,我们使用陀螺仪来估计相机的旋转,并使用图像帧中的结构 - 从运动来估计相机的翻译。通过考虑相机的旋转和翻译和相机运动模型来描绘惯性视觉状态与相机3D运动之间的关系来构建相机投影模型。通过融合惯性测量(IMU)的方法和计算机视觉(CV)的方法,我们的解决方案对快速运动和暴力困难的解决方案非常强大,而且它大大降低了视频稳定中的计算开销。与基于IMU的解决方案相比,我们的解决方案可以以更准确的方式估计翻译,因为我们在相邻图像帧中使用特征点对而不是错误易于的加速度计来估计转换。与基于CV的解决方案相比,我们的解决方案可以用较少数量的特征点对估计翻译,因为3D运动中未确定的自由度的数量直接从6到3中减少。我们在智能眼镜上实现了一种原型系统和智能手机,并在实际情况下评估性能,即人类受试者使用移动设备在行走,攀爬或骑行时拍摄视频。实验结果表明,我们的解决方案比在视频稳定方面的最新解决方案方面实现了32%的性能。此外,平均处理时间延迟是32.6ms,其低于传统的帧间时间间隔,即33ms,因此满足在线处理的实时要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号