首页> 外文期刊>IEEE transactions on mobile computing >Dynamic Model for Network Selection in Next Generation HetNets With Memory-Affecting Rational Users
【24h】

Dynamic Model for Network Selection in Next Generation HetNets With Memory-Affecting Rational Users

机译:内存影响Rational Users的下一代Hetnets网络选择动态模型

获取原文
获取原文并翻译 | 示例

摘要

Recently, due to the staggering growth of wireless data traffic, heterogeneous networks have drawn tremendous attention due to the capabilities of enhancing the capacity/coverage and reducing energy consumption for the next generation wireless networks. In this paper, we study a long-run user-centric network selection problem in the 5G heterogeneous network, where the network selection strategies of the users can be investigated dynamically. Unlike the conventional studies on the long-run model, we incorporate the memory effect and consider the fact that the decision-making of the users is affected by their memory, i.e., their past service experience. Namely, the users select the network based on not only their instantaneous achievable service experience but also their past service experience within their memory. Specifically, we model and study the interaction among the users in the framework of fractional evolutionary game based on the classical evolutionary game theory and the concept of the power-law memory. We analytically prove that the equilibrium of the fractional evolutionary game exists, is unique and uniformly stable. We also numerically demonstrate the stability of the fractional evolutionary equilibrium. Extensive simulations have been conducted to evaluate the performance of the fractional evolutionary game. The numerical results have revealed some insightful findings. For example, the user in the fractional evolutionary game with positive memory effect can achieve a higher cumulative utility compared with the user in the fractional evolutionary game with negative memory effect. Moreover, the fractional evolutionary game with positive memory effect can reduce the loss in the user's cumulative utility caused by the small-scale fading.
机译:最近,由于无线数据流量的惊人增长,由于增强了下一代无线网络的能量/覆盖度和降低能耗的能力,异构网络引起了巨大的关注。在本文中,我们研究了5G异构网络中的长期用户中心网络选择问题,其中可以动态地调查用户的网络选择策略。与对长期模型的传统研究不同,我们融入了记忆效果,并考虑了用户的决策受到记忆的影响,即他们过去的服务体验。即,用户不仅根据他们的即时可实现的服务体验选择网络,而且选择他们在记忆中的过去的服务体验。具体而言,基于古典演化博弈论和幂律记忆概念,我们模拟和研究用户框架中的互动。我们分析证明,分数进化比赛的均衡存在,是独特的,是均匀的稳定性。我们还在数值上展示了分数进化平衡的稳定性。已经进行了广泛的模拟,以评估分数进化游戏的性能。数值结果揭示了一些有洞察力的发现。例如,具有阳性内存效果的分数进化游戏中的用户可以实现更高的累积效用,而在具有负记忆效果的分数进化游戏中相比。此外,具有阳性记忆效应的分数进化游戏可以减少由小规模衰落引起的用户累积效用中的损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号