首页> 外文期刊>IEEE transactions on mobile computing >Computer Vision-Assisted 3D Object Localization via COTS RFID Devices and a Monocular Camera
【24h】

Computer Vision-Assisted 3D Object Localization via COTS RFID Devices and a Monocular Camera

机译:计算机视觉辅助3D对象本地化通过COTS RFID设备和单眼相机

获取原文
获取原文并翻译 | 示例

摘要

In most RFID localization systems, acquiring a reader antenna's position at each sampling time is challenging, especially for those antenna-carrying robot or drone systems with unpredictable trajectories. In this article, we present RF-MVO that fuses RFID and computer vision for stationary RFID localization in 3D space by attaching a light-weight 2D monocular camera to two reader antennas in parallel. First, the existing monocular visual odometry only recovers a camera/antenna trajectory in the camera view from 2D images. By combining it with RF phase, we design a model to estimate a scale factor for real-world trajectory transformation, along with spatial directions of an RFID tag relative to a virtual antenna array due to the mobility of each antenna. Then we propose a novel RFID localization algorithm that does not require exhaustively searching all possible positions within the pre-specified region. Second, to speed up the searching process and improve localization accuracy, we propose a coarse-to-fine optimization algorithm. Third, we introduce the concept of horizontal dilution of precision (HDOP) to measure the confidence level of localization results. Our experiments demonstrate the effectiveness of proposed algorithms and show RF-MVO can achieve 6.23 cm localization error.
机译:在大多数RFID本地化系统中,在每个采样时间获取读者天线的位置是具有挑战性的,特别是对于那些具有不可预测的轨迹的天线携带机器人或无人机系统。在本文中,我们通过将轻型2D单眼相机连接到两个读取器天线,为三维空间中的静态RFID定位提供RF-MVO,使RFID和计算机视觉进行静止的RFID定位。首先,现有的单眼视觉内径术仅在2D图像中恢复相机视图中的相机/天线轨迹。通过将其与RF相结合,我们设计模型以估计实际轨迹变换的比例因子,以及由于每个天线的移动性,RFID标签相对于虚拟天线阵列的空间方向。然后,我们提出了一种新颖的RFID定位算法,其不需要彻底搜索预先指定区域内的所有可能位置。其次,为了加快搜索过程并提高本地化准确性,我们提出了一种粗略对精细的优化算法。第三,我们介绍了精度(HDOP)水平稀释的概念,以测量定位结果的置信水平。我们的实验证明了所提出的算法的有效性,并显示RF-MVO可以实现6.23cm的本地化误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号