首页> 外文期刊>IEEE transactions on mobile computing >Anonymization and De-Anonymization of Mobility Trajectories: Dissecting the Gaps Between Theory and Practice
【24h】

Anonymization and De-Anonymization of Mobility Trajectories: Dissecting the Gaps Between Theory and Practice

机译:移动轨迹的匿名化和匿名化:解剖理论与实践之间的差距

获取原文
获取原文并翻译 | 示例

摘要

Human mobility trajectories are increasingly collected by ISPs to assist academic research and commercial applications. Meanwhile, there is a growing concern that individual trajectories can be de-anonymized when the data is shared, using information from external sources (e.g., online social networks). To understand this risk, prior works either estimate the theoretical privacy bound or simulate de-anonymization attacks on synthetically created datasets. However, it is not clear how well the theoretical estimations are preserved in practice. In this article, we collected a large-scale ground-truth trajectory dataset from 2,161,500 users of a cellular network, and two matched external trajectory datasets from a large social network (56,683 users) and a check-in/review service (45,790 users) on the same user population. The two sets of large ground-truth data provide a rare opportunity to extensively evaluate a variety of de-anonymization algorithms (nine in total). We find that their performance in the real-world dataset is far from the theoretical bound. Further analysis shows that most algorithms have under-estimated the impact of spatio-temporal mismatches between the data from different sources, and the high sparsity of user generated data also contributes to the under-performance. Based on these insights, we propose four new algorithms that are specially designed to tolerate spatial or temporal mismatches (or both) and model location contexts and time contexts. Extensive evaluations show that our algorithms achieve more than 17 percent performance gain over the best existing algorithms, confirming our insights. Further, we propose two new location-privacy preserving mechanisms utilizing the spatio-temporal mismatches to better protect users' privacy against the de-anonymization attack. Evaluation results show that our proposed mechanisms can reduce the performance of de-anonymization attacks by over 8.0 percent, demonstrating the effectiveness of our insights.
机译:ISP越来越多地收集人类流动轨迹,以协助学术研究和商业应用。同时,越来越担心,使用来自外部源的信息(例如,在线社交网络),可以在共享数据时匿名地匿名。要了解这一风险,请先作品估计理论隐私绑定或模拟综合创建数据集的脱姓攻击。但是,目前尚不清楚理论估计在实践中的保留程度。在本文中,我们从蜂窝网络的2,161,500个用户收集了一个大型地面轨迹数据集,以及来自大型社交网络的两个匹配的外部轨迹数据集(56,683个用户)和办理入住/审查服务(45,790个用户)在同一用户人口。这两套大型地面真理数据提供了一个难得的机会,可以广泛评估各种去匿名化算法(总共九个)。我们发现他们在现实世界数据集中的表现远远不受理论界限。进一步的分析表明,大多数算法估计了来自不同来源的数据之间的时空失配的影响,并且用户生成的数据的高稀疏性也有助于性能的贡献。基于这些见解,我们提出了四种新算法,专门设计用于容忍空间或时间不匹配(或两者)和模型位置上下文和时间上下文。广泛的评估表明,我们的算法在最好的现有算法上实现了超过17%的性能增益,确认了我们的见解。此外,我们提出了两个新的位置隐私保留机制,利用时空不匹配来更好地保护用户隐私免受违反匿名攻击。评估结果表明,我们的拟议机制可以减少脱姓攻击的表现超过8.0%,展示了我们见解的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号