首页> 外文期刊>IEEE transactions on mobile computing >TaggedAR: An RFID-Based Approach for Recognition of Multiple Tagged Objects in Augmented Reality Systems
【24h】

TaggedAR: An RFID-Based Approach for Recognition of Multiple Tagged Objects in Augmented Reality Systems

机译:Taggedar:基于RFID的方法,用于在增强现实系统中识别多个标记对象

获取原文
获取原文并翻译 | 示例

摘要

With computer vision-based technologies, current Augmented reality (AR) systems can effectively recognize multiple objects with different visual characteristics. However, only limited degrees of distinctions can be offered among different objects with similar natural features, and inherent information about these objects cannot be effectively extracted. In this paper, we propose TaggedAR, i.e., an RFID-based approach to assist the recognition of multiple tagged objects in AR systems, by deploying additional RFID antennas to the COTS depth camera. By sufficiently exploring the correlations between the depth of field and the received RF-signal, we propose a rotate scanning-based scheme to distinguish multiple tagged objects in the stationary situation, and propose a continuous scanning-based scheme to distinguish multiple tagged human subjects in the mobile situation. By pairing the tags with the objects according to the correlations between the depth of field and RF-signals, we can accurately identify and distinguish multiple tagged objects to realize the vision of "tell me what I see" from the AR system. We have implemented a prototype system to evaluate the actual performance with case studies in a real-world environment. The experiment results show that our solution achieves an average match ratio of 91 percent in distinguishing up to dozens of tagged objects with a high deployment density.
机译:通过基于计算机视觉的技术,目前的增强现实(AR)系统可以有效地识别具有不同视觉特性的多个对象。然而,只有有限的不同程度可以在具有类似自然特征的不同对象中提供,并且无法有效地提取有关这些对象的固有信息。在本文中,我们通过将额外的RFID天线部署到COTS深度摄像机,提出了基于RFID的方法来帮助识别AR系统中的多个标记对象。通过充分探索场景与接收的RF信号之间的相关性,我们提出了一种基于扫描的方案,以区分静止情况下的多个标记对象,并提出一种基于连续的扫描方案,以区分多个标记的人体受试者移动情况。通过将标签与对象相对根据字段和RF信号之间的相关性配对,我们可以准确地识别和区分多个标记对象,以实现“告诉我我所看到的”的愿景。我们已经实现了一种原型系统,以评估实际性能,在真实世界环境中具有案例研究。实验结果表明,我们的解决方案实现了91%的平均匹配比,在具有高部署密度的几十个标记物体中区分多变量。

著录项

  • 来源
    《IEEE transactions on mobile computing》 |2019年第5期|1188-1202|共15页
  • 作者单位

    Nanjing Univ State Key Lab Novel Software Technol Nanjing Shi 210008 Jiangsu Sheng Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing Shi 210008 Jiangsu Sheng Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing Shi 210008 Jiangsu Sheng Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing Shi 210008 Jiangsu Sheng Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing Shi 210008 Jiangsu Sheng Peoples R China;

    Temple Univ Dept Comp Informat & Sci Philadelphia PA 19122 USA;

    Nanjing Univ State Key Lab Novel Software Technol Nanjing Shi 210008 Jiangsu Sheng Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Passive RFID; augmented reality system; object recognition; prototype design;

    机译:被动RFID;增强现实系统;对象识别;原型设计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号