首页> 外文期刊>Mobile Computing, IEEE Transactions on >QELAR: A Machine-Learning-Based Adaptive Routing Protocol for Energy-Efficient and Lifetime-Extended Underwater Sensor Networks
【24h】

QELAR: A Machine-Learning-Based Adaptive Routing Protocol for Energy-Efficient and Lifetime-Extended Underwater Sensor Networks

机译:QELAR:一种基于机器学习的自适应路由协议,用于节能高效且可扩展的水下传感器网络

获取原文
获取原文并翻译 | 示例

摘要

Underwater sensor network (UWSN) has emerged in recent years as a promising networking technique for various aquatic applications. Due to specific characteristics of UWSNs, such as high latency, low bandwidth, and high energy consumption, it is challenging to build networking protocols for UWSNs. In this paper, we focus on addressing the routing issue in UWSNs. We propose an adaptive, energy-efficient, and lifetime-aware routing protocol based on reinforcement learning, QELAR. Our protocol assumes generic MAC protocols and aims at prolonging the lifetime of networks by making residual energy of sensor nodes more evenly distributed. The residual energy of each node as well as the energy distribution among a group of nodes is factored in throughout the routing process to calculate the reward function, which aids in selecting the adequate forwarders for packets. We have performed extensive simulations of the proposed protocol on the Aqua-sim platform and compared with one existing routing protocol (VBF) in terms of packet delivery rate, energy efficiency, latency, and lifetime. The results show that QELAR yields 20 percent longer lifetime on average than VBF.
机译:近年来,水下传感器网络(UWSN)作为一种有前景的联网技术而出现,可用于各种水生应用。由于UWSN的特定特性,例如高延迟,低带宽和高能耗,因此为UWSN建立网络协议具有挑战性。在本文中,我们专注于解决UWSN中的路由问题。我们提出了一种基于强化学习QELAR的自适应,节能且具有生命周期的路由协议。我们的协议采用通用MAC协议,旨在通过使传感器节点的剩余能量更均匀地分布来延长网络的寿命。在整个路由过程中,会考虑每个节点的剩余能量以及一组节点之间的能量分布,以计算奖励函数,这有助于为数据包选择适当的转发器。我们已经在Aqua-sim平台上对提议的协议进行了广泛的仿真,并且在数据包传输速率,能效,延迟和寿命方面与一种现有的路由协议(VBF)进行了比较。结果表明,QELAR的平均使用寿命比VBF长20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号