首页> 外文期刊>IEEE transactions on mobile computing >Deep CNN-Based Real-Time Traffic Light Detector for Self-Driving Vehicles
【24h】

Deep CNN-Based Real-Time Traffic Light Detector for Self-Driving Vehicles

机译:基于深CNN的自动驾驶车辆实时交通信号灯检测器

获取原文
获取原文并翻译 | 示例

摘要

Due to the unavailability of Vehicle-to-Infrastructure (V2I) communication in current transportation systems, Traffic Light Detection (TLD) is still considered an important module in autonomous vehicles and Driver Assistance Systems (DAS). To overcome low flexibility and accuracy of vision-based heuristic algorithms and high power consumption of deep learning-based methods, we propose a lightweight and real-time traffic light detector for the autonomous vehicle platform. Our model consists of a heuristic candidate region selection module to identify all possible traffic lights, and a lightweight Convolution Neural Network (CNN) classifier to classify the results obtained. Offline simulations on the GPU server with the collected dataset and several public datasets show that our model achieves higher average accuracy and less time consumption. By integrating our detector module on NVidia Jetson TX1/TX2, we conduct on-road tests on two full-scale self-driving vehicle platforms (a car and a bus) in normal traffic conditions. Our model can achieve an average detection accuracy of 99.3 percent (mRttld) and 99.7 percent (Rttld) at 10Hz on TX1 and TX2, respectively. The on-road tests also show that our traffic light detection module can achieve < +/- 1.5m errors at stop lines when working with other self-driving modules.
机译:由于当前交通运输系统中无法使用车对基础设施(V2I)通信,因此交通信号灯检测(TLD)仍被视为自动驾驶汽车和驾驶员辅助系统(DAS)中的重要模块。为了克服基于视觉的启发式算法的低灵活性和准确性以及基于深度学习的方法的高功耗,我们提出了一种用于自动驾驶车辆平台的轻型实时交通信号灯检测器。我们的模型包括一个启发式候选区域选择模块(用于识别所有可能的交通信号灯)和一个轻量级的卷积神经网络(CNN)分类器,以对所获得的结果进行分类。在GPU服务器上使用收集的数据集和几个公共数据集进行的离线模拟表明,我们的模型实现了更高的平均准确度和更少的时间消耗。通过将检测器模块集成到NVidia Jetson TX1 / TX2上,我们可以在正常交通情况下在两个全尺寸自动驾驶汽车平台(汽车和公共汽车)上进行路测。我们的模型在TX1和TX2上在10Hz时的平均检测准确率分别达到99.3%(mRttld)和99.7%(Rttld)。道路测试还表明,当与其他自动驾驶模块一起使用时,我们的交通信号灯检测模块在停车线处的误差可达到<+/- 1.5m。

著录项

  • 来源
    《IEEE transactions on mobile computing》 |2020年第2期|300-313|共14页
  • 作者

  • 作者单位

    Beihang Univ State Key Lab Software Dev Environm Beijing 100083 Peoples R China;

    Beihang Univ State Key Lab Virtual Real Technol & Syst Beijing Adv Innovat Ctr Big Data & Brain Comp BDB Hangzhou Innovat Inst Beijing 100083 Peoples R China;

    Qatar Univ Coll Engn Doha Qatar;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Traffic light detection; autonomous vehicle; deep learning; machine learning; dataset;

    机译:交通信号灯检测;自动驾驶汽车深度学习机器学习资料集;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号